nterreg France-Wallonie-Vlaanderen

PSYCHE

Avec le soutien du Fonds européen de développement régional Met steun van het Europees Fonds voor Regionale Ontwikkeling

UNION EUROPÉENNE EUROPESE UNIE

PSYCHE Consortium Neeting

PSYCHE Project

LCT (UGent) + IMAP (UCL)

Base Cheol

State of the art of plastic waste gasification

Review

Multi-scale Modeling of Plastic Waste Gasification: Opportunities and Challenges

Sepehr Madanikashani 1,3, Laurien Vandewalle 1, Steven De Meester 2, Juray De Wilde3 and Kevin M. Van Geem1,*

- ¹ Laboratory for Chemical Technology (LCT), Faculty of Engineering and Architecture, Ghent University Technologiepark 121, Zwijnaarde 9052, Belgium
- ² Laboratory for Circular Process Engineering (LCPE), Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
- ³ Materials and Process Engineering (IMAP), Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain - Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
- * Correspondence: Kevin.VanGeem@UGent.be

https://www.mdpi.com/1996-1944/15/12/4215

Essential is the syngas quality: feed dependent

1	Natural Gas	Asphaltene	Coal	Pet Coke	
	vol% dry gas, O₂ fired	vol% dry gas, O₂ fired	vol% dry gas, O₂ fired	vol% dry gas, O₂ fired	
	63.0	44.7	38.0	33.0	
-	33.5	45.0	45.0	53.2	
	3.0	10.0	15.0	12.0	
	0.2	0.3	2.0	0.6	
	0.3	500 ppm	250 ppm	0.2	
	0	1.3	0.9	1.5	
	1.8	1.0	0.9	0.6	

Syngas quality: air versus oxygen

- Air-blown gasifiers avoid the large capital cost of an ASU but produce a much lower calorific value syngas than oxygenblown gasifiers. The nitrogen in the air typically dilutes the syngas by a factor of 3 compared to oxygen-blown gasification.
- In the future O_2 could come from electrolysis...
- This has a significant impact on the design of the combustion system. Because the nitrogen in air must be heated to the gasifier exit temperature by burning some of the syngas, air-blown gasification is more favourable for gasifiers which operate at lower temperatures (i.e. non-slagging).
- Air-blown gasifiers also have a negative impact on CO₂ capture. Because of the dilution effect of the nitrogen, the partial pressure of CO₂ in air-blown gasifier syngas will be one-third of that from an oxygen-blown gasifier. This increases the cost and decreases the effectiveness of the CO_2 removal equipment

	Gasifier A	Gasifier B	Gasifier A	Gasifier B
WO2012064936A1	vol% dry	vol% dry	vol% dry	vol% dry
	Air fired	Air fired	oxygen-fired	yas, Oxygen-fired
H2 (v/v %)	5-39	10-30	5-39	10-35
CO (v/v%)	5-39	10-39	5-39	15-39
CO2 (v/v%)	15-50	15-35	15-50	15-40
N2 (v/v%)	10-60	10-30	8-30	8-15
CH4 (v/v%)	0-10	0-10	0-10	0-10
CxHy(v/v%)	0-4	0-4	0-4	0-4
H2S (ppm)	400-2000	400-2000	400-2000	400-2000
COS (ppm)	5-400	5-400	5-400	5-400
HCI (ppm)	1000-5000	1000-5000	1000-5000	1000-5000
NH3 (ppm)	1000-5000	1000-5000	1000-5000	1000-5000
Ar (v/v%)	0-2	0-2	0-2	0-2
H2/CO	0.3-2	0.6-1.5	0.3-2	0.6-1.5
H2O (v/v%) in wet gas	15-50	15-30	15-50	15-30
Particulate matter (mg/Nm3)	Up to 50,000	From 5,000 to 29,500 or from 30,500 to 50,000	Up to 50,000	From 5,000 to 29,500 or from 30,500 to 50,000

Crude Syngas Compositions from the Gasification of Waste

Measuring syngas composition/impuirties: AED

The atomic emission detector (AED) is based on the intense emission properties of elements, particularly halogens, phosphorus, nitrogen, and sulphur, following excitation in a helium plasma.

Modeling approach: Comprehensive vs. Simplified

1) Porous solid plastic core; 2) Melt front; 3) Liquid layer; 4) Pyrolysis and evaporation (devolatilization) layer; 5) Gasification layer (including char); 6) Bubbles present in the liquid layer as the result of pyrolysis and evaporation; 7) Vortex-pattern flows as the result of Marangoni and convection effects; 8) Diffusive transport phenomena; 9) Possible temperature (or concentration) profile as the result of internal circulations in the liquid phase; 10) Internal radiative and conductive heat transfer; 11) Conductive and convective heat and mass transfer; 12) Radiation and convective heat and mass transfer; 13) Mass diffusion; 14) Heat of melting; 15) Heat of decomposition and evaporation; 16) Heat of gasification

1) Solid plastic core; 2) Sharp melt front; 3) Liquid layer; 4) Pyrolysis and evaporation (devolatilization) layer; 5) Gasification layer (including char); 6) Infinite internal heat and mass transfer; 7) Convective heat and mass transfer; 8) Heat of melting; 9) Heat of decomposition and evaporation; 10) Heat of gasification

COMPREHENSIVE

SIMPLIFIED

The chemistry is complex even without impurities

Simplified Single-Step Pyrolysis Reaction and Evaporation

 $C_n H_m O_p N_q \rightarrow a H_2 + b CO + c CO_2 + d CH_4 + e C_2 H_4 + f C_2 H_6 + g C_x H_y + h N_2 + i C_2 H_6 + g C_x H_y + h C_2$

Gasification Reactions

- $C_nH_m + O_2 \rightarrow CO_2 + H_2$ $C_nH_m + H_2O \rightarrow CO + H_2$ $C_nH_m + CO_2 \rightarrow CO + H_2$ $CO + O_2 \rightarrow CO_2$ $CO + H_2O \leftrightarrow CO_2 + H_2$ $CO + 3H_2 \leftrightarrow CH_4 + H_2O$ $2CO + 2H_2 \rightarrow CH_4 + CO_2$ $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$
- $C + O_2 \rightarrow CO_2$ $C + \frac{1}{2}O_2 \rightarrow CO$ $C + H_2O \rightarrow CO + H_2$ $C + 2H_2O \rightarrow CO_2 + 2H_2$ $C + CO_2 \leftrightarrow 2CO$ $C + 2H_2 \rightarrow CH_4$

Contaminants in post-consumer plastic waste

Halogen content (in ppmw) of representative products analysed via lon Chromatography^[1]

Metal content of post-consumer mixed polyolefin (MPO) waste analysed via ICP-OES^[2]

		CI	Br	F			and the second second	20-2
	– Cap Tr.	320	<50	<40	<50			
MAXIPACK	Cap Red	200	<50	<40	<50			
100%	Bottle	710	<50	<40	<50			
NYDEINESCHE REINIONE ENTOYANT MEDICALE COMMAN & REV (1975) Management of a concentrative terminal	Label	2300	<50	<40	<50		Element	ppmw
							Na	4 578
		200	<50	<40	<50	Cap	Ma	220
(RESH RACK (20)		<150	<50	<40	<50	Bottle	Ca	3435
NEERDEMMER		220	-50	-40	-50		Sr	6
Original	Tray <150 <50	<40	<50		Ti	170		
66.		<150	<50	<40	<50		Cr	24
8 Miles	1:4	.150	-50	-10	-50		Mn	2
		<150	<50	<40	<50		Fe	124
		900	<50	<40	<50	Сар	Cu	20
		400	= 0	40	50		Zn	63
		180	<50	<40	<50	Bottle	AI	258
	Cap	200	<50	<40	<50	46 ZX	TI	3
							Pb	3
Dasi	Bottle	<150	<50	<40	<50		Sb	17
Aus Blanc que Blans	l ahel	<150	< 50	<40	<50		As	3

[1] Roosen et al. (2020). Environ Sci Technol 54(20): 13282-13293. [2] Kusenberg et al. (2022). Fuel Process Technol 227: 107090.

Elemental analysis of postconsumer MPO^[2]

Element	wt.%
Ν	0.9
С	82.0
н	13.3
S	<lod< th=""></lod<>
0	3.8

Post-consumer plastic waste is a diverse feedstock with a huge range of elements

Electrification: can we use green electricity?

Van Geem and Weckhuysen (2022): Toward an e-chemistree : materials for electrification of the chemical industry

Multiscale modeling approach for gasifier design

Highlight 1: vortex gasification unit constructed!

Multiphase Chemical Reactors

Process intensification in terms of heat & mass transfer

GSVR Research @ LCT

CFD

Cold-Flow GSVR

Hot-Flow GSVR

Reactive GSVR

Vortex Technology

- Decouple F_c and F_d by introducing external force ullet
- Offer guidance for design the blade-driven mode \bullet

Van Geem et al., et al. U.S. Patent Application No. 16/627,430.

Experimental setup

Controlled chamber rotation as an approach to:

- Independently control of flowrate and rotating speed
- Investigate the hydrodynamic study of these variables

Feeding is more challenging then expected

— First using the previous gravimetric feeder: Comparable to the biomass pyrolysis experiments

UCL work

Pyrolysis of plastic: Vortex and/or conventional technology based on plastic as **continuous** or **dispersed** phase?

Plastic as **continuous** phase

• Feeding system: extrusion screw

Simplicity of design Ο

- Feeding system: spray nozzle
 - Reduced wall friction \bigcirc

 - Ο
 - liquid phase

Plastic as **dispersed** phase

Wall fouling can be prevented High interfacial surface area

Added value of Vortex chamber technology?

Pros

- Intensification of interfacial mass and heat transfer
- Different types of multi-zone operations possible

Cons

- Flow complexity & control Minimum flow rate requirement in order to ensure vortex regime Energy consumption related to bed rotation to be analyzed Lower length-to-diameter ratio (lower) heat exchanging surface area per unit reactor volume)

spray tower could be interesting technology but blockages of spray nozzle are the main concern

Extruder works better for vortex reactor

Development of Online Sampling System

 $C_{3}H_{8}$ - To quantify isobutane and non-condensable gases in RGA iso-Butane – To characterize liquid products and gases in GC x GC

Schematic of the Sampling System

How does it work?

Pine biomass particles rotating in the GSVR

24

Cold flow testing and data acquisition

Computational fluid dynamics (CFD)

"cleverly forged data"

"contract for difference"

"colors for directors"

Simulate fluid flow based on conservation equations

CFD validation

Probing or interpolating the PIV data and CFD results at the exact same positions, allows a one-on-one comparison of the experiments and simulations

Operating conditions: 40 Nm³/hr air @ 291 K, 10.7 g Al (500 µm, 2700 kg/m³) Specularity coefficients: $\Phi_w = 0.075$, $\Phi_b = 0.05$

RESEARCH, 58(28), 12751-12765

Tested feedstocks

- Biomass
- Natural gas
- Polystyrene
- Polyethylene

Stable operation:

FB1 - DeSisto et al. Energy Fuels (2010) 24:2646-2651 FB2 - Men et al. Bioresource Technol (2012) 111:439-446 FB3 - Kim et al. Renewable Energy (2013) 50:188-195 FB4 - Westerhof et al. Ind. Eng. Chem. Res. (2010) 49:1160-1168

PS Pyrolysis Experiment in the VR

- Expected liquid production in PS pyrolysis ~ 70-90%
- Obtained liquid product ~ 14%
- High flow of gas \rightarrow short residence time
- − low surface area \rightarrow Incapability of condensers

Challenges

Possible Solutions

Online sampling and analysis with injecting the IS

Modifying the condensers (Packing or S&T condenser)

Liquid Products Analysis

Acknowledgements

PSYCHE

Avec le soutien du Fonds européen de développement régional Met steun van het Europees Fonds voor Regionale Ontwikkeling

West-Vlaanderen

Elisabeth Delbeke Science Policy Coordinator for Sustainable Chemistry

CENTER FOR SUSTAINABLE CHEMISTRY

- Е Elisabeth.Delbeke@ugent.be
- Т +32 9 331 17 51
- Μ +32 497 72 15 32

www.ugent.be

- **Ghent University** l fl
- @ugent y
- in **Ghent University**

