nterreg France-Wallonie-Vlaanderen

PSYCHE

Avec le soutien du Fonds européen de développement régional Met steun van het Europees Fonds voor Regionale Ontwikkeling

UNION EUROPÉENNE EUROPESE UNIE

From CO_x to Light Olefins:

Computer-Aided Catalyst Design

Andrei Y. Khodakov¹ and Joris W. Thybaut²

¹Unité de Catalyse et Chimie du Solide, Université de Lille ²Laboratory for Chemical Technology, Ghent University

08/12/2022

ideal catalyst: needle in a haystack

www.jolyon.co.uk

Fischer Tropsch Synthesis

- carbon monoxide (CO) (or carbon dioxide (CO₂)) and hydrogen (H2), conversion into hydrocarbons.
 (2n+1) H₂ + n CO → C_n H_(2n+2) + n H₂O
 CO + H₂O → H₂ + CO₂
- insight in reaction chemistry and process via modelling:
 - ✓ elementary steps
 - ✓ machine learning

Cheap and abundant metal!

experimental search for best catalysts

FINAL GOAL!

Avantium Flowrence High throughput test 16 parallel reactors

light olefin synthesis from CO

Barrios A., Bang G., Yuan L., Peron D., Petr. A., Virginie M., Wojcieszak R., Thybaut J., Ordomsky V., Khodakov A. Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Appplied Catalyisis B: Environmental, 2020, 273.

6

summary: light olefin synthesis from CO

- Promotion with soldering metals (Sn, Sb and Bi)
- **Diffusion on catalyst surface**
- **Strong Fe-promoter interaction**

TOF increases because of close interaction of active sites with the promoters

Iron carbides formation was systematically observed by different techniques (XRD, Mössbauer, **NAP(XPS)** and Magnetization

virtual catalyst design

Pirro et al. Catalysis Science & Technology **9** 3109 (2019)

SEMK framework :

network generation for FTS kinetic and catalyst descriptors.

virtual catalyst design :

generation of virtual catalyst library. numerical simulation using SEMK. comparison and screening with experimental results (iterative process).

identification of descriptors

4

)

Chakkingal et al. Chemical Engineering Journal 419, 129633 (2021)

Reaction family/elementary reaction	$\mathrm{E_{a}^{for}}~(\mathrm{kJ/mol})$
Reactant adsorption	
$H_2 + 2M \rightleftharpoons 2MH$	0
2. $CO + 2M \rightleftharpoons MMCO$	0
Initiation reactions	
3. $MMCO + 3M \rightleftharpoons MMMC + MMO$	56.81 ± 0.53
4. MMMC + MH \rightleftharpoons MMMCH + M	77.66 ± 0.70
5. MMMCH + MH \rightleftharpoons MMCH ₂ + 2M	11.94 ± 0.10
$3. \text{ MMCH}_2 + \text{MH} \rightleftharpoons \text{MCH}_3 + 2\text{M}$	61.88 ± 0.50
Chain growth	
7. $MC_nH_{2n+1} + MMCH_2 \rightleftharpoons MC_{n+1}H_{2n+3} + 2M$	44.79 ± 0.43
Formation of alkanes	
$3. MC_nH_{2n+1} + MH \rightleftharpoons C_nH_{2n+2} + 2M$	117.75 ± 0.67
Formation of metal alkenes	
$0. MC_nH_{2n+1} + M \rightleftharpoons MC_nH_{2n} + MH$	96.27 ± 0.50
Alkene desorption	
10. $MC_nH_{2n} \rightleftharpoons C_nH_{2n} + M$	62.09 (n=2)
	59.08 (n=3-10)
Formation of carbon dioxide	
11. $O - CHO - M + M - OH + O \rightleftharpoons O - COOH - M$	
+ O - H + M	138.95 ± 1.15
Water formation	
12. $MMO + MH \rightleftharpoons MOH + 2M$	103.80 ± 0.96
13. $MOH + MH \rightleftharpoons H2O + 2M$	86.22 ± 0.62

Atomic Chemisorption enthalpies	${ m Fe/CNT}\ ({ m kJ/mol})$	${ m FeBi/CNT}\ (kJ/mol)$	FePb/CNT (kJ/mol)
$\begin{array}{l} Q_{H} \ (Fe_{x}C-H) \\ Q_{C} \ (Fe_{x}C-C) \\ Q_{O} \ (Fe_{x}C-O) \end{array}$	$249.5 \\ 644.1 \\ 601.0$	247.7 632.1 589.1	248.4 641.5 577.1

Interreg France-Wallonie-Vlaanderen

identification of optimal catalyst descriptors

Fe/CNT

FeBi/CNT.

620

220

600

(kJimol) 200 (kJimol)

570 J

(c)

650

QC (kJ/mol)

640

- experimentally observed yields:
 - Fe/CNT: 20%
 - FeBi/CNT: 27%
 - FePb/CNT: 30%

- maximum achievable light olefin yield: 50% Q_H ≈ 234 kJ/mol $Q_{\rm C} \approx 622 \text{ kJ/mol}$
- - Q₀ ≈ 576 kJ/mol

230

High (0.5)

Low (0.28)

Pb/CNT

QH (kJ/mol)

Chakkingal et al. Chemical Engineering Journal 419, 129633 (2021)

3D descriptor spaces representing conversion,

balance between effort and insight

- microkinetic model
 - elementary steps

- machine learning •
 - apparent models

PSYCHE

France-Wallonie-Vlaanderen

light olefin selectivity

- light olefin selectivity more pronouncedly nonlinear with temperature and pressure
- lasso regression, but also kNN unable to capture these nonlinearities
- SVM and ANN predict the nonlinear relation accurately.

relative importance (Shap)

- temperature (1x) and pressure (0.22-0.26x) are most influential (both conversion and light olefin selectivity)
- convers (0.03x).
- light olefin selectivity: syngas ratio (0.03x) and space-time (0.03x).

Chakkingal et al. Chemical Engineering Journal (2022)

conversion: space time (0.1x) over syngas ratio

light olefin synthesis from CO₂ over promoted Fe/ZrO₂ catalysts 35 FeM/ZrO₂ catalysts % 30

Catalysts promoted with K showed the highest olefin selectivities

Most selective catalysts to lower olefins were selected to be further studied

summary: catalyst parameters for light olefin synthesis from CO_2

Better Fe Reducibility

Higher extent of iron carbidization

Basicity

Best promoters are alkaline metals. Work better together with Cu, Mo, Ga and Ce

Better Fe dispersion

light olefin synthesis from CO or CO_2 ?

The best catalysts for hydrogenation of CO to light olefins are not good for hydrogenation of CO_2 and vice versa.

CO hydrogenation shows higher light olefin selectivity compared to CO₂ hydrogenation

Importance of sustainable hydrogen !

Selectivity to CO close to 100%

Maximum selectivity to light olefins $\sim 60\%$

conclusions

- modeling provides crucial insights in how reaction performances relate to input and Ο operating conditions
- balance between effort and insight is pursued Ο
 - elementary step based modeling
 - machine learning 0
- Fischer Tropsch synthesis case study Ο
 - SEMK virtual catalyst design identified descriptors for enhanced light olefin 0 selectivity.
 - Machine Learning models for optimizing operating conditions (trained on SEMK data) Ο
 - nonlinearities in chemical kinetics require ANN and SVR ML models over Lasso or Ο **kNN**
 - interpretation techniques allow opening the black box ML models 0

Q&A

Acknowledgements

PSYCHE

Avec le soutien du Fonds européen de développement régional Met steun van het Europees Fonds voor Regionale Ontwikkeling

West-Vlaanderen

Service public de Wallonie