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dehydrogenation of lower alkanes to corresponding alkenes

dehydrogenation of lower alcohols to corresponding aldehydes

partial oxidation reactions (o-xylene to phtalic anhydride)

steam reforming of methane (synthesis gas production)

ammonia synthesis

ammoxidation of propylene (acrylonitril)

oxychlorination of ethylene (vinyl chloride)

alkylation of aromatic compounds (ethylbenzene) 

ammonia oxidation in nitric acid synthesis

INDUSTRIAL APPLICATIONS OF FIXED BED REACTORS
some important processes



INDUSTRIAL APPLICATIONS OF FIXED BED REACTORS
two main types of fixed bed reactors

single adiabatic fixed bed
commonly used for mildly

exothermic reactions

multi-tubular fixed bed
commonly used for highly

exothermic reactions
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MULTI-TUBULAR FIXED BED REACTORS
characteristics

• TYPICAL PROPERTIES

+ commercial reactors contain up to 20000 parallel tubes !
+ tube diameter: 0.04 m
+ tube length: 4.0 m 
+ catalyst particle diameter: 4-5 mm
+ ratio of tube diameter to catalyst particle diameter: 8-10 !!!

low ratio of tube diameter to particle diameter leads to 
considerable deviation of plug flow condition

considerable effect on performance of multi-tubular fixed bed
chemical reactor (conversion and selectivity)

even flow distribution over many parallel tubes is important
and challenging to achieve



MODELLING OF FIXED BED REACTORS
approaches

Fluid-particle interaction
Closures obtained

la
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2D phenomenological
(design) models

DNS or Particle
Resolved Models

Volume-averaged or 
particle un-resolved models

Fluid-particle interaction
Closures required

Closures required for fluid-
particle interaction, dispersion

1D phenomenological
(design) models

Closures required for fluid-
particle interaction, dispersion

classical design models used in Chemical Reaction Engineering (CRE)

CFD models based on micro-balances for mass, momentum and heat

em
pirical input
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• FEATURES

+ Eulerian grid + implicit boundary condition treatment at IB

• ADVANTAGES

+ all details of continuous phase flow field are captured
+ arbitrary shape of solid particles can be accounted for

• DISADVANTAGES

+ IBM simulations are CPU-demanding (especially in 3D) 
+ limited to relatively small number of solid bodies (typically 103)

DNS BASED ON IMMERSED BOUNDARY METHOD (IBM) 



Main assumptions

constant physical properties of the fluid (gas) phase 

first order exothermal chemical reaction 
inside catalyst particles with uniform diameter

No reaction in the fluid (gas) phase

conjugate mass and heat transport

Arrhenius dependence of reaction rate constant

radiative heat transport can be neglected

IBM BASED DNS MODEL
reactive systems 
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IBM BASED DNS MODEL
transport phenomena in packed bed reactors: DEM generated beds

Das et al., 2017, CES



IBM BASED DNS MODEL
transport phenomena in packed bed reactors: porosity profiles

Das et al., 2017, CES



IBM BASED DNS MODEL
transport phenomena in packed bed reactors: velocity profiles (N=6)

Red=1 Red=500

Das et al., 2017, CES



mm/s

phase fractions (left) and axial velocity map (right) for a 
packed bed of spheres with a diameter of 4 mm

IBM BASED DNS MODEL
comparison with experiment (MRI flow imaging)

Lovreglio et al., 2018, AIChEJ



Rep = 50

radial porosity profile (left) and axial velocity profile (right)
for a packed bed of spheres with a diameter of 5 mm

IBM BASED DNS MODEL
comparison with experiment (MRI flow imaging)

Lovreglio et al., 2018, AIChEJ



IBM BASED DNS MODEL
transport phenomena in packed bed reactors: temperature profiles

Das et al., 2017, CES
conjugate heat transport in 

fluid and solid phase



IBM BASED DNS MODEL
transport phenomena in packed bed reactors: temperature profiles

Das et al., 2017, CES
conjugate heat transport in 

fluid and solid phase



IBM BASED DNS MODEL
transport phenomena in packed bed reactors: wall-to-bed heat 

transfer

Das et al., 2017, CES



Rep αp (W/(m2.K))

DNS

αp (W/(m2.K))

Gunn (1978)

km (m/s)

DNS

km (m/s)

Gunn (1978)

120 25.23 26.87 0.0219 0.0228

180 30.28 31.91 0.0263 0.0272

240 34.33 36.36 0.0298 0.0310

( )( ) ( )2 0.2 1/3 2 0.7 1/37 10 5 1 0.7 Re Pr 1.33 2.4 1.2 Re Prp b b p b b pNu ε ε ε ε= − + + + − +

( )( ) ( )2 0.2 1/3 2 0.7 1/37 10 5 1 0.7 Re 1.33 2.4 1.2 Rep b b p b b pSh Sc Scε ε ε ε= − + + + − +

IBM BASED DNS MODEL
fluid-particle (spheres) heat transfer: comparison with empirical 

correlation

Gunn, International J. Heat and Mass Transfer (1978) 

Deen & Kuipers, 2014, CES



IBM BASED DNS MODEL
distribution of fluid-particle heat transfer coefficient at Rep=60

for 3000 spherical particles
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temperature, cold fluid entering 

from bottom of the column
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broad distribution of αp prevails due to 
existence of preferential pathways of the

fluid percolating through the stationary array

Deen & Kuipers, 2014, CES



IBM BASED DNS MODEL
isothermal reaction with diffusion limitation in single particle

Chandra et al., 2020, CEJ
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IBM BASED DNS MODEL
effectiveness factor versus Thiele modulus (single sphere)
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IBM BASED DNS MODEL
concentration and temperature distributions (single sphere)

0.4 20 0.6 1.162φ γ β η∞ = = = ⇒ =

lower stable steady state:

Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
concentration and temperature distributions (single sphere)

higher stable steady state:

0.4 20 0.6 44.94φ γ β η∞ = = = ⇒ =

Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
single sphere (Rep=60 and φ=2.0): effect of ratio of diffusivities
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Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
full bed simulations: values of nondimensional parameters
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IBM BASED DNS MODEL
full bed simulations: flow field

radial profile of the
azimuthally averaged

superficial axial 
velocity component

Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
full bed simulations at φ0=0.5: temperature and concentration 

distributions in central plane

Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
full bed simulations at φ0=1.0: transient evolution of temperature

and concentration distributions in central plane
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“back ignition”

Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
full bed simulations at φ0=1.0: cross-sectional profiles

of concentration and temperature
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Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
full bed simulations at φ0=1.0 and comparison with 1D heterogeneous 

model

1D heterogeneous model uses empirical closures for fluid-particle mass
& heat transfer coefficients, heat & mass dispersion coefficients

and wall-to-bed heat transfer coefficient

Chandra et al., 2020, CEJ



IBM BASED DNS MODEL
comparison of computed wall-to-bed heat transfer with Yagi & Wakao

empirical correlation 

Chandra et al., 2020, CEJ



CONCLUSIONS

• DNS OF FIXED BED CHEMICAL REACTORS

+ powerful tool for advancing fundamental understanding 

• EXPERIMENTAL VALIDATION

+ important role for non-invasive monitoring (MRI)

• MAJOR CHALLENGES

+ coupling to complex catalytic chemical reactions (MCEC, ARC CBBC)

+ closure development + improvements for phenomenological design models

+ imaging of multiphase flows with catalytic chemical reactions
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IBM BASED DNS MODEL
governing equations fluid phase

• CONTINUITY EQUATION

• MOMENTUM EQUATION

• THERMAL ENERGY EQUATION

• SPECIES CONSERVATION EQUATION
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IBM BASED DNS MODEL
governing equations “solids” or particle phase

• TRANSLATIONAL EQUATION OF MOTION

• ROTATIONAL EQUATION OF MOTION

• SPECIES AND THERMAL ENERGY EQUATIONS
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equations of motion are 
only required for moving 
particles as encountered 

in gas-particle flows



IBM BASED DNS MODEL
closure equations

• FLUID-PARTICLE DRAG

• FLUID-PARTICLE TORQUE

• FLUID-PARTICLE HEAT AND MASS TRANSFER RATES
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separate evaluation of friction drag and pressure drag 



IBM BASED DNS MODEL
numerical solution of fluid equations

• KEY FEATURES

+ explicit treatment of convection term

+ implicit treatment of pressure gradient

+ implicit treatment of diffusion terms

+ staggered computational mesh

+ sequential solution methodology
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IBM BASED DNS MODEL 
fluid-solid coupling for Dirichlet boundary conditions
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Immersed Boundary treatment

identify “solids” nodes

eliminate φ0 at “solids” nodes  

pφ

value of φ at the
immersed boundary



IBM BASED DNS MODEL
fluid-solid coupling with intra-particle scalar transport
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thermal boundary conditions
at the fluid-solid 

interface
(similar for mass transport)

Das et al., 2017, CES
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