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ideal catalyst: needle in a haystack



▪ carbon monoxide (CO) and hydrogen (H2), (syngas) conversion into hydrocarbons.

(2n+1) H2 + n CO → Cn H(2n+2) + n H2O 

CO + H2O → H2 + CO2

▪ insight in reaction chemistry and process via modelling:

✓ elementary steps 

✓ machine learning

Fischer Tropsch Synthesis

Coal

Biomass

Plastic waste Gasification
Syngas

Processing
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Tropsch

Synthesis
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Fe gasoline range, olefins

Co diesel and waxes

Ru too expensive and difficult too handle

Ni methanation

Rh ethanol, C2 oxygenates

Pd methanol

Cu methanol

Metals of VIII group of Periodic Table

Fe 1

Ni

150

Co

500

Ru

144000

Cheap and abundant metal!

Prices consulted on 02/12/21 

https://www.londonstockexchange.com/

choice of active metal



6

✓Promoters selection is an important point in the design of efficient catalysts

✓Different elements were chosen as promoters for CO and CO2 hydrogenation

choice of promoters



experimental search for  best catalysts 
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Fe-based 
catalysts

Direct 
olefins 

production

Support

Promoters

Right support 

for CO and 

CO2 reaction

Activity

Selectivity

Stability

Determination of 

active species 

(XAS,Mössbauer, 

NAP-XPS, etc) FINAL GOAL!

Characterization
Under 

optimized 

conditions

Avantium Flowrence

High throughput test

16 parallel reactors
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➢ Fe/SiO2 catalyst was used as reference

➢ HTE used to evaluate 27 promoters
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Biomass

Coal

Natural Gas

Shale Gas

Coal-bed gas

Syngas

Rh

Cu FeCx

Co RuMoS2

Bi PbSnSb

HTE

FeCx

T= 350 °C, H2/CO= 1, P= 10 bar

Barrios A., Bang G., Yuan L., Peron D., Petr. A., Virginie M., Wojcieszak R., Thybaut J., Ordomsky V.., Khodakov A. Identification of efficient promoters and selectivity trends in high temperature

Fischer-Tropsch synthesis over supported iron catalysts. Appplied Catalyisis B: Environmental, 2020, 273.

➢ Maximum olefins selectivity was obtained 

a lower CO conversion

➢ Bi and Pb show higher olefin conversion 

at similar conversion levels compared to 

other promoters

Bi and Pb

light olefin synthesis from CO
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Si

O2

Si

O2
➢ Promotion with soldering metals (Sn, Sb and Bi) 

➢ Diffusion on catalyst surface

➢ Strong Fe-promoter interaction

core-shell structures Alloy formation Close to FeNPs
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CO 350 °C

redispersion

TOF increases because of close interaction of active sites with the promoters

Iron carbides formation was 

systematically observed by different 

techniques (XRD, Mössbauer, 

NAP(XPS) and Magnetization

summary: light olefin synthesis from CO
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virtual catalyst design

SEMK framework :

▪ network generation for FTS

▪ kinetic and catalyst descriptors.

virtual catalyst design :

▪ generation of virtual catalyst library.

▪ numerical simulation using SEMK.

▪ comparison and screening with   

experimental results (iterative process).

start

end
Pirro et al. Catalysis Science & Technology 9 3109 (2019)



identification of descriptors
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Chakkingal et al. Chemical Engineering Journal 419, 129633 (2021)

Gu et al. Applied Catalysis B: Environmental 234, 153 (2018).



identification of optimal catalyst descriptors

▪ 3D descriptor spaces representing conversion, 

selectivity & yield

▪ experimentally observed yields:

▪ Fe/CNT: 20%

▪ FeBi/CNT: 27%

▪ FePb/CNT:  30%

▪ maximum achievable light olefin yield: 50% 

▪ QH ≈ 234 kJ/mol

▪ QC ≈ 622 kJ/mol

▪ QO ≈ 576 kJ/mol

12

Fig: Iso-surfaces of conversion, light olefin selectivity and yield.

Chakkingal et al. Chemical Engineering Journal 419, 129633 (2021)



balance between effort and insight
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• microkinetic model

• elementary steps

• detailed reactor equations

• machine learning

• apparent models

• automation



light olefin selectivity

• light olefin selectivity more pronouncedly 

nonlinear with temperature and pressure

• lasso regression, but also kNN unable to 

capture these  nonlinearities

• SVM and ANN predict the nonlinear relation 

accurately. 

14



relative importance (Shap)

• temperature (1x) and pressure (0.22-0.26x) are 

most influential (both conversion and light olefin 

selectivity)

• conversion: space time (0.1x) over syngas ratio 

(0.03x). 

• light olefin selectivity: syngas ratio (0.03x) and 

space-time (0.03x).

15Chakkingal et al. Chemical Engineering Journal revised version submitted (2022)
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➢ Fe/ZrO2 was used as reference

➢ Promoted catalyst show higher

activity than reference one

➢ More pronounced for the K

promoted catalyst

light olefin synthesis from CO2
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➢ Catalysts promoted with K showed the highest olefin selectivities

➢ Most selective catalysts to lower olefins were selected to be further studied

light olefin synthesis from CO2
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Si
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➢ Best promoters are alkaline metals. Work better together with Cu, Mo, Ga and 

Ce  

Better Fe dispersion
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summary: catalyst parameters for light olefin 
synthesis from CO2
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CO2 CO

Ethylene

Propylene

Butylene
Catalyst Catalyst

RWGS

light olefin synthesis from CO or CO2 ?

Selectivity to CO close to 100% Maximum selectivity to light olefins ⁓ 60%

The best catalysts for hydrogenation of CO to light olefins are not good for hydrogenation of CO2

and vice versa.

CO hydrogenation shows higher light olefin selectivity compared to CO2 hydrogenation

Importance of sustainable hydrogen !



conclusions 

o modeling provides crucial insights in how reaction performances relate to input and 

operating conditions

o balance between effort and insight is pursued

o elementary step based modeling

o machine learning

o Fischer Tropsch synthesis case study

o SEMK virtual catalyst design identified descriptors for enhanced light olefin 

selectivity. 

o Machine Learning models for optimizing operating conditions (trained on SEMK data)

o nonlinearities in chemical kinetics require ANN and SVR ML models over Lasso or 

kNN

o interpretation techniques allow opening the black box ML models

20



future perspectives

o linking modeling results back to experiments

o nr. of data points for training ML models

o use of ML for experimental design

21



Q&A
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Data analysis: Correlation coefficient

The Pearson correlation coefficient between a pair of variables( the 

predictor variables and the targeted FTS products.

• If r > 0, there exists positive correlation between two variables. 

• If r < 0, there exists the negative correlation. 

• The absolute value of r indicates the degree of correlation

• Temperature is most important process variable impacting the 

process.

• The impact of space time and syngas ratio is limited.



catalyst performance optimisation

▪ elementary kinetic models provide fundamental 

insight in reaction chemistry

▪ Single-Event Micro Kinetic (SEMK) models 

particularly relevant for complex mixtures

▪ Fe-based FTS catalysts: low cost, selectivity to 

olefins

▪ light olefin selectivity can be enhanced with 

promoters, e.g. Pb, Bi promoters

25

catalyst for FTS 
(olefin)

SEMK model
key 

descriptors 

better

Gu et al. Applied Catalysis B: Environmental 234, 153 (2018)



reaction network Fe-based catalyst
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Reactions considered:

• Reactants chemisorption

• Direct CO dissociation

• Water removal by consecutive hydrogenation

• Monomer formation by consecutive hydrogenation

• Chain growth by CH2 insertion

• Alkanes formation by hydrogenation

• Metal alkenes formation by hydrogen abstraction

• Alkenes chemisorption

• Water Gas Shift

the reaction network is considered till C10 to avoid end of chain 

effects.



virtual catalyst screening

▪ entire catalyst descriptor space is sampled

▪ identification of virtual catalyst matching the 

experimental results. 

▪ various performance indicators are considered:

▪ light olefin selectivity (left)

▪ methane production

▪ heavy fraction

▪ CO2

27

performance results for Bi and Pb promoted Fe catalyst, 

623 K, 10 bar, GHSV =3.4 Lg−1h−1,Wcat=0.2 g

Gu et al. Applied Catalysis B: Environmental 234, 153 (2018)



multi-response ML model: artificial neural network
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CO conversion
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• conversion behaves non-linearly with temperature 

and pressure

• lasso regression unable to capture the nonlinear 

relations

• KNN, and particularly SVM and ANN more 

accurately



interpretability: opening the black box model

what about black box models (ANN)?

• complex models like ANN are hard to interpret.

• interpretability techniques allow usage of more complex models 

without losing all interpretation power.

does the ML model interpret the process variables as interpreted  

by the kinetic models? 

• interpretation process helps in ranking

the process variables 

based on their impact on output.

• combined effects and 

correlation of different input features 

could also be identified.
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