

France-Wallonie-Vlaanderen

PSYCHE

Avec le soutien du Fonds européen de développement régional Met steun van het Europees Fonds voor Regionale Ontwikkeling

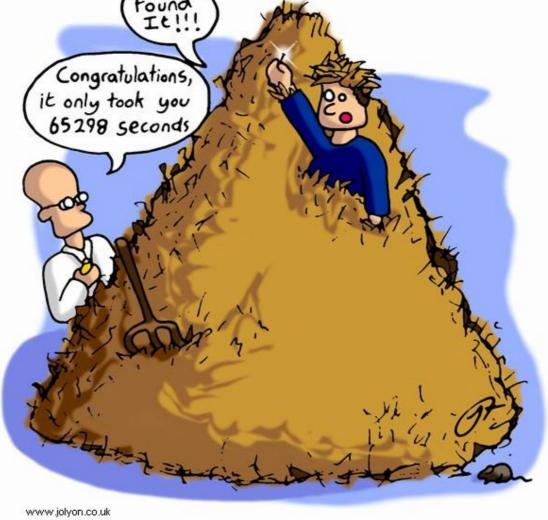
From CO_x to Light Olefins:

Computer-Aided Catalyst Design

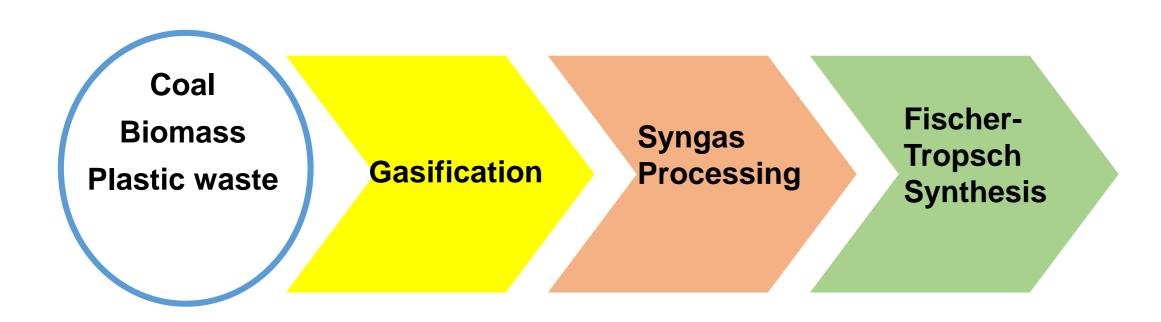
Andrei Y. Khodakov¹ and Joris W. Thybaut²

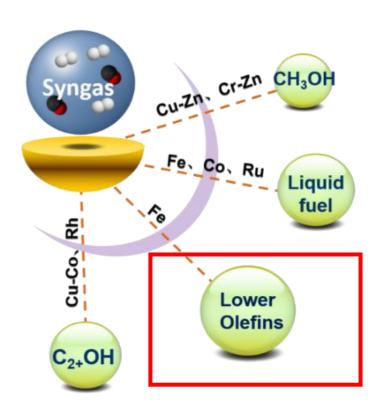
¹Unité de Catalyse et Chimie du Solide, Université de Lille ²Laboratory for Chemical Technology, Ghent University 02/06/2022

ideal catalyst: needle in a haystack



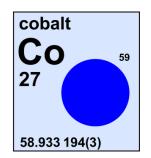
Fischer Tropsch Synthesis



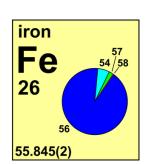


carbon monoxide (CO) and hydrogen (H2), (syngas) conversion into hydrocarbons.

$$\begin{array}{l} (2n+1)\;H_2+n\;CO\to C_n\;H_{(2n+2)}+n\;H_2O\\ CO+H_2O\to H_2+CO_2 \end{array}$$



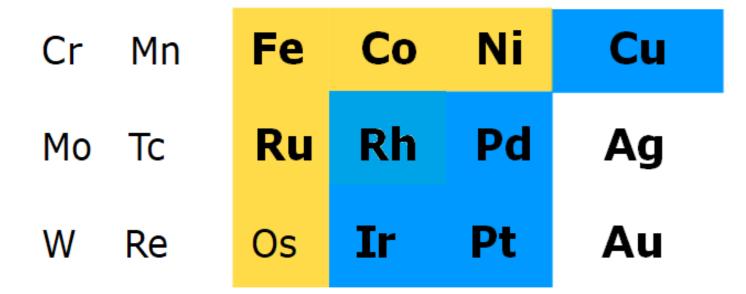
- insight in reaction chemistry and process via modelling:
 - ✓ elementary steps
 - machine learning



choice of active metal

Metals of VIII group of Periodic Table

CO dissociation = hydrocarbons



no CO dissociation = methanol

Fe gasoline range, olefins

Co diesel and waxes

Ru too expensive and difficult too handle

Ni methanation

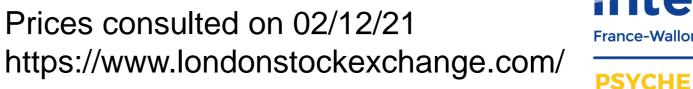
Rh ethanol, C₂ oxygenates

methanol Pd

Cu methanol



Cheap and abundant metal!



Prices consulted on 02/12/21

choice of promoters

- ✓ Promoters selection is an important point in the design of efficient catalysts
- ✓ Different elements were chosen as promoters for CO and CO₂ hydrogenation

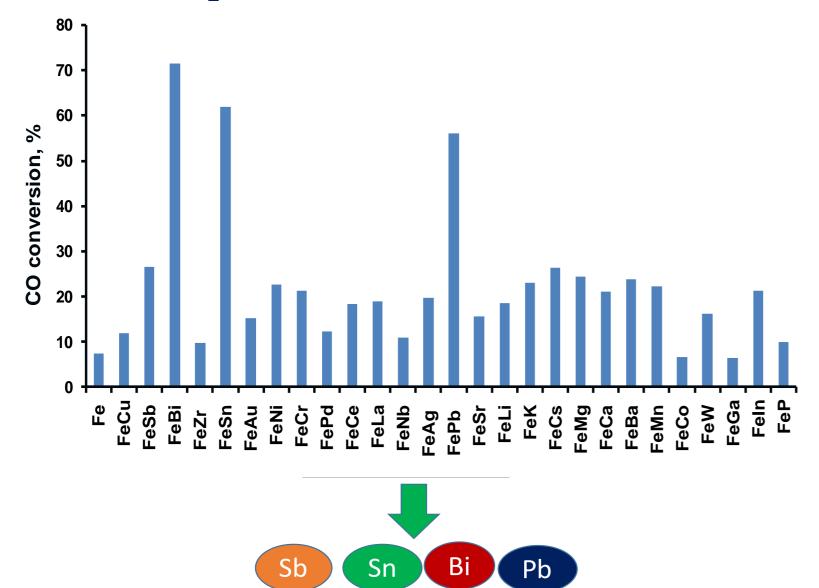
Soldering promoters							
Bi	Pb)	Sb	Sn			
Basic promoters							
K	Cs	Mg	Ba	Ca			
Multiple oxidation states							
Мо	Cr	W C	Ce V	Mn			
Other metallic promoters							
ln	Zn	Ga	Nb	Cu			

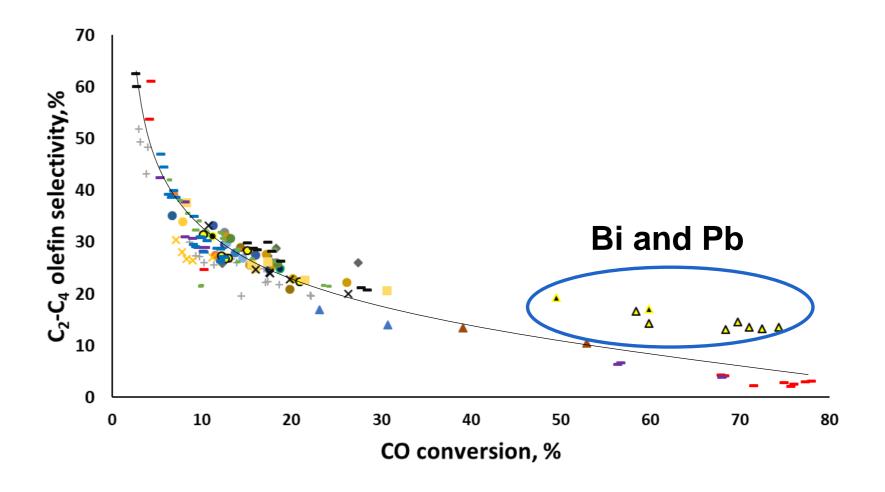
experimental search for best catalysts



light olefin synthesis from CO

- > Fe/SiO₂ catalyst was used as reference
- > HTE used to evaluate 27 promoters





- Maximum olefins selectivity was obtained a lower CO conversion
- Bi and Pb show higher olefin conversion at similar conversion levels compared to other promoters
 Interreg

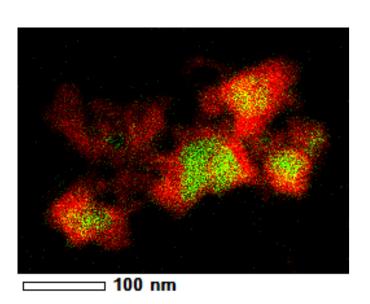
France-Wallonie-Vlaanderen UNION EUROPÉSE UNIE

summary: light olefin synthesis from CO

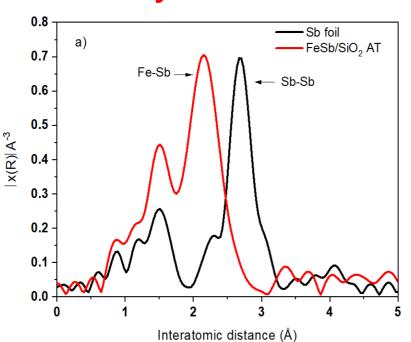
- > Promotion with soldering metals (Sn, Sb and Bi)
- Diffusion on catalyst surface
- Strong Fe-promoter interaction

Iron carbides formation was systematically observed by different techniques (XRD, Mössbauer, NAP(XPS) and Magnetization

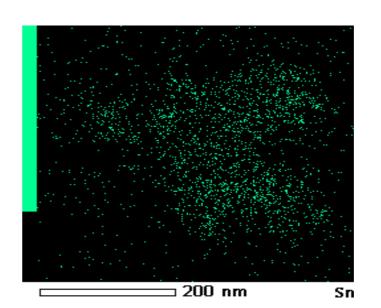
core-shell structures



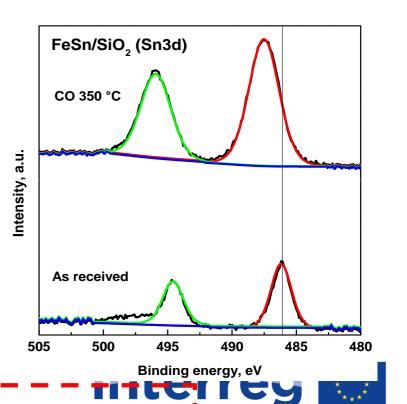
Alloy formation



Close to FeNPs

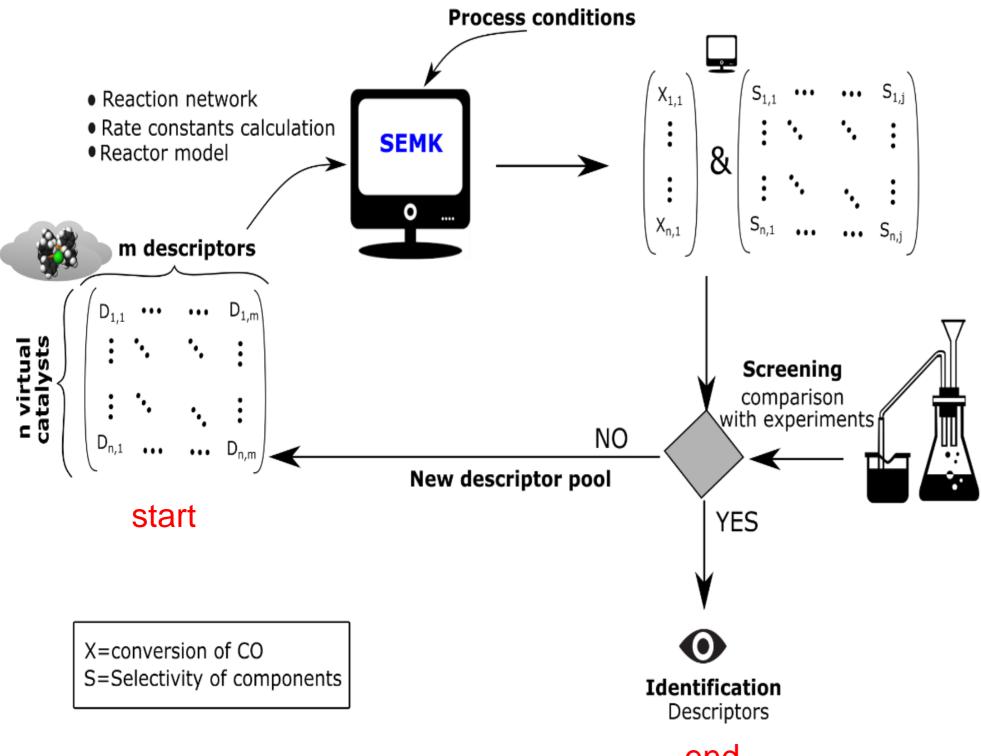


redispersion



TOF increases because of close interaction of active sites with the promoters

virtual catalyst design



SEMK framework:

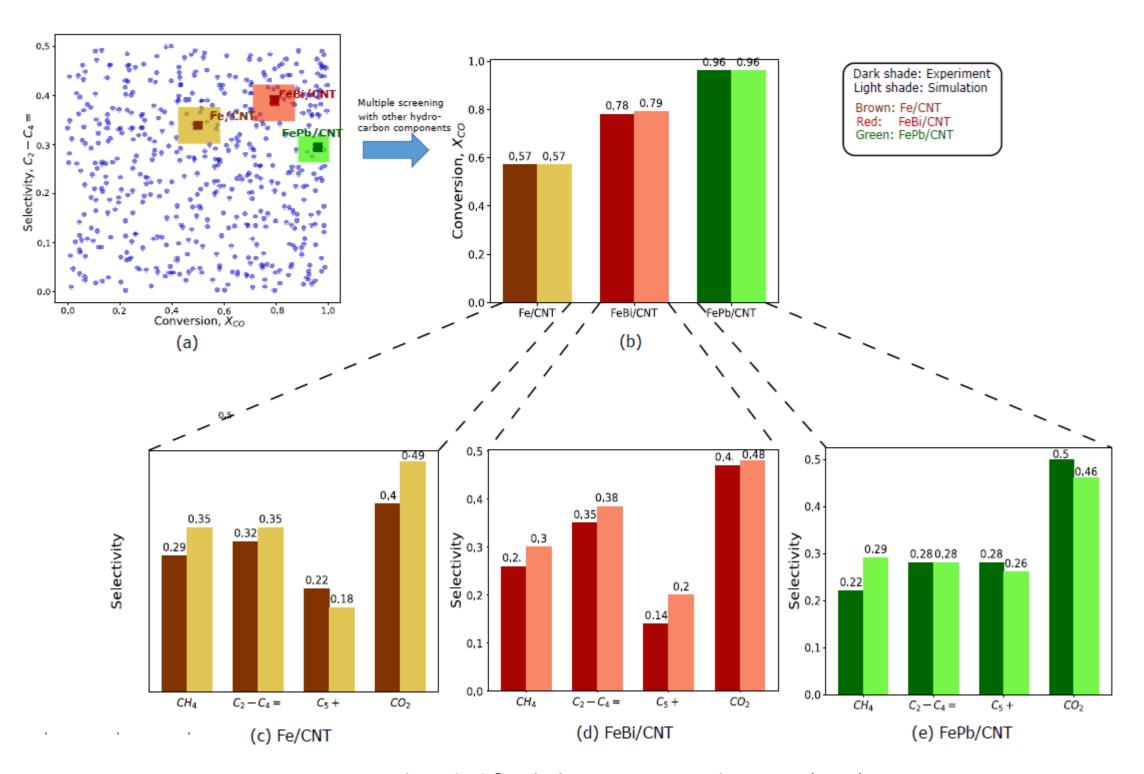
- network generation for FTS
- kinetic and catalyst descriptors.

virtual catalyst design:

- generation of virtual catalyst library.
- numerical simulation using SEMK.
- comparison and screening with experimental results (iterative process).

PSYCHE

identification of descriptors



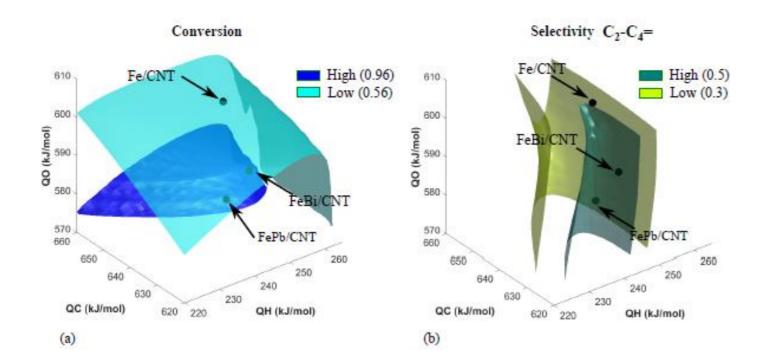
Gu et al. Applied Catalysis B: Environmental **234**, 153 (2018).

Chakkingal et al. Chemical Engineering Journal **419**, 129633 (2021)

$Reaction\ family/elementary\ reaction$	E _a (kJ/mol)	
Reactant adsorption		
1. $H_2 + 2M \rightleftharpoons 2MH$	0	
$2. \text{ CO} + 2\text{M} \rightleftharpoons \text{MMCO}$	0	
Initiation reactions		
3. $MMCO + 3M \rightleftharpoons MMMC + MMO$	56.81 ± 0.53	
4. $MMMC + MH \rightleftharpoons MMMCH + M$	77.66 ± 0.70	
5. $MMMCH + MH \rightleftharpoons MMCH_2 + 2M$	11.94 ± 0.10	
6. $MMCH_2 + MH \rightleftharpoons MCH_3 + 2M$	61.88 ± 0.50	
Chain growth		
7. $MC_nH_{2n+1} + MMCH_2 \rightleftharpoons MC_{n+1}H_{2n+3} + 2M$	44.79 ± 0.43	
Formation of alkanes		
8. $MC_nH_{2n+1} + MH \rightleftharpoons C_nH_{2n+2} + 2M$	117.75 ± 0.67	
Formation of metal alkenes		
9. $MC_nH_{2n+1} + M \rightleftharpoons MC_nH_{2n} + MH$	96.27 ± 0.50	
Alkene desorption		
10. $MC_nH_{2n} \rightleftharpoons C_nH_{2n} + M$	62.09 (n=2)	
	59.08 (n=3-10)	
Formation of carbon dioxide	, ,	
11. $O - CHO - M + M - OH + O \rightleftharpoons O - COOH - M$		
+ O - H + M	138.95 ± 1.15	
Water formation		
12. $MMO + MH \rightleftharpoons MOH + 2M$	103.80 ± 0.96	
13. $MOH + MH \rightleftharpoons H2O + 2M$	86.22 ± 0.62	

Atomic Chemisorption enthalpies	${ m Fe/CNT} \ { m (kJ/mol)}$	${ m FeBi/CNT} \ ({ m kJ/mol})$	${ m FePb/CNT} \ { m (kJ/mol)}$
$\begin{array}{c} \mathrm{Q_H} \ (\mathrm{Fe_x C} - \mathrm{H}) \\ \mathrm{Q_C} \ (\mathrm{Fe_x C} - \mathrm{C}) \\ \mathrm{Q_O} \ (\mathrm{Fe_x C} - \mathrm{O}) \end{array}$	249.5	247.7	248.4
	644.1	632.1	641.5
	601.0	589.1	577.1

identification of optimal catalyst descriptors



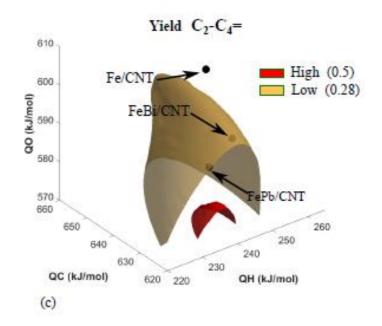
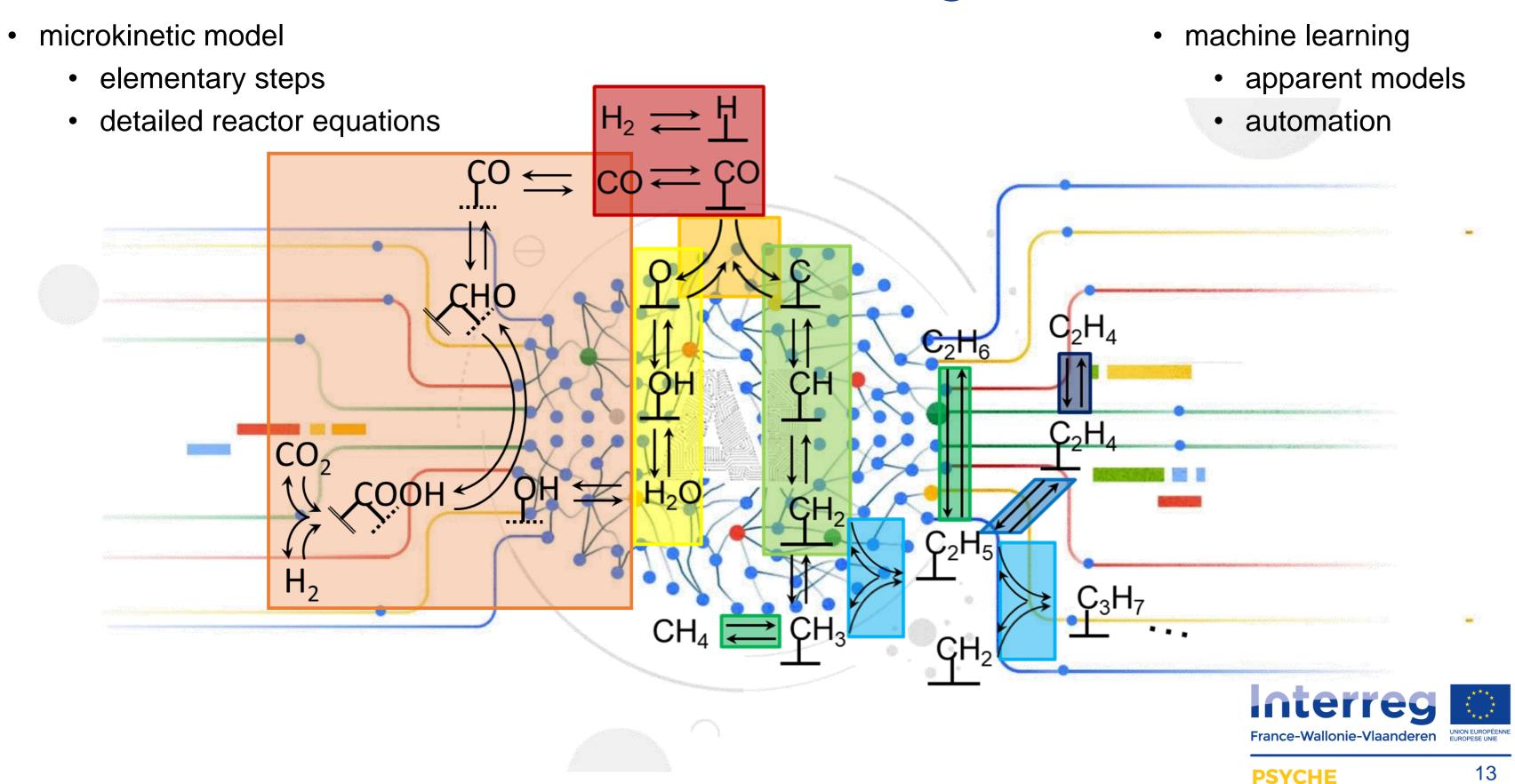


Fig: Iso-surfaces of conversion, light olefin selectivity and yield.

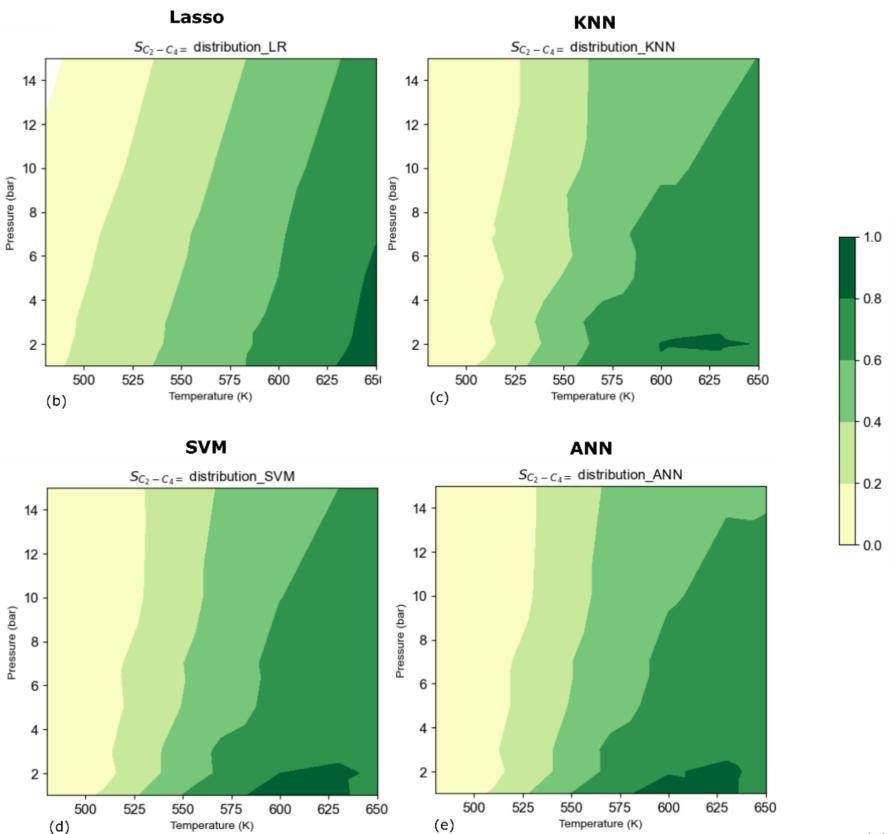
- 3D descriptor spaces representing conversion, selectivity & yield
- experimentally observed yields:
 - Fe/CNT: 20%
 - FeBi/CNT: 27%
 - FePb/CNT: 30%
- maximum achievable light olefin yield: 50%
 - $Q_H \approx 234 \text{ kJ/mol}$
 - $Q_C \approx 622 \text{ kJ/mol}$
 - $Q_0 \approx 576 \text{ kJ/mol}$

balance between effort and insight

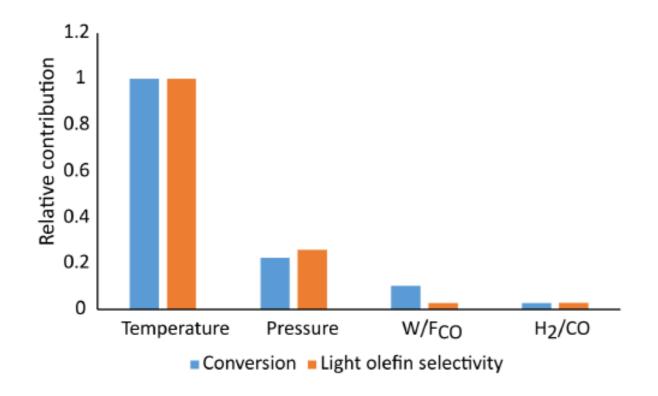


light olefin selectivity

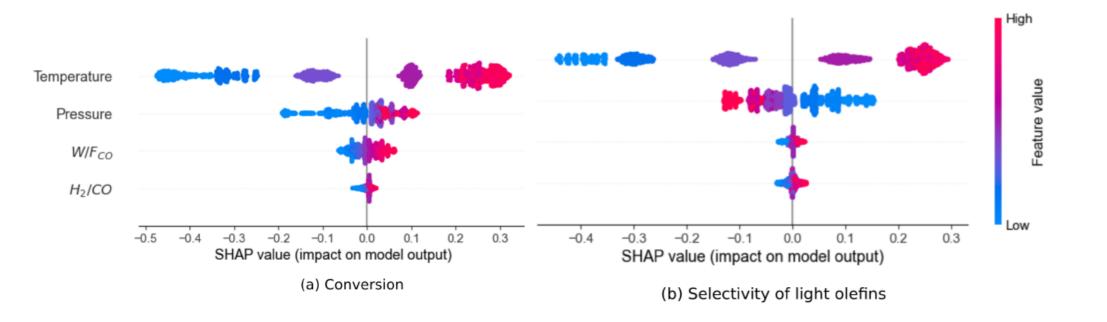
- light olefin selectivity more pronouncedly nonlinear with temperature and pressure
- lasso regression, but also kNN unable to capture these nonlinearities
- SVM and ANN predict the nonlinear relation accurately.



relative importance (Shap)

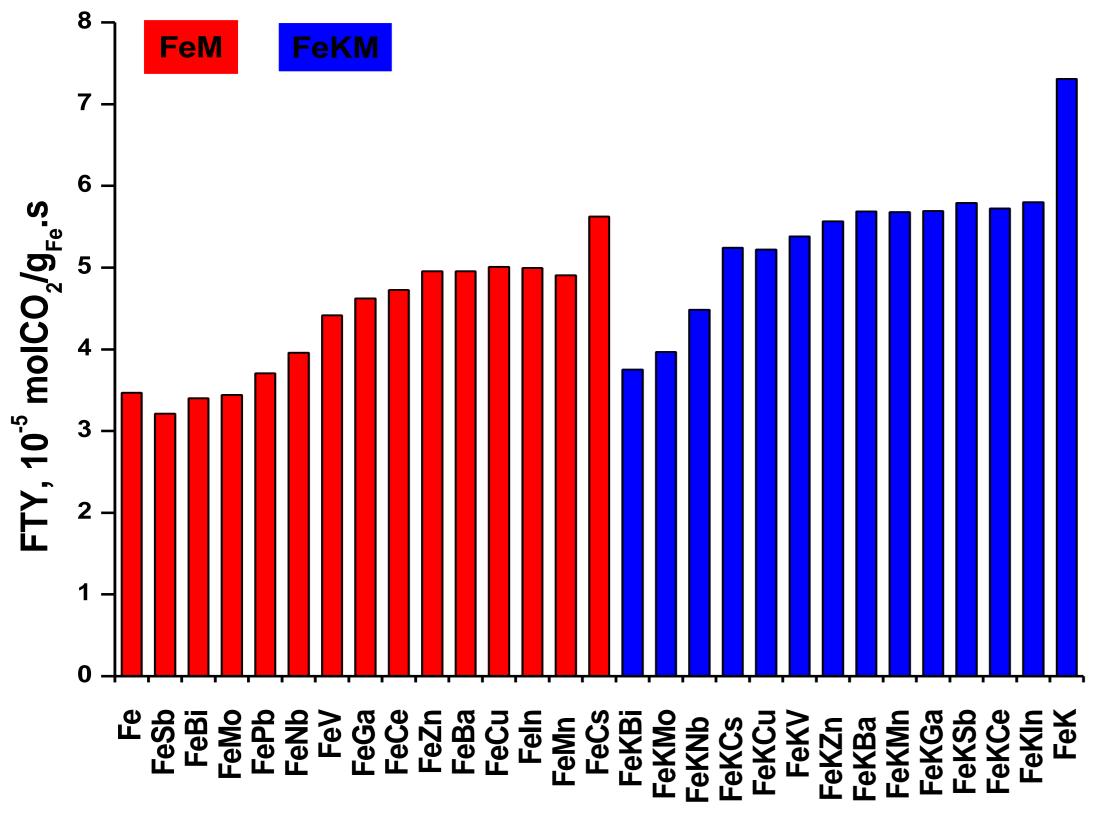


- temperature (1x) and pressure (0.22-0.26x) are most influential (both conversion and light olefin selectivity)
- conversion: space time (0.1x) over syngas ratio (0.03x).
- light olefin selectivity: syngas ratio (0.03x) and space-time (0.03x).



PSYCHE

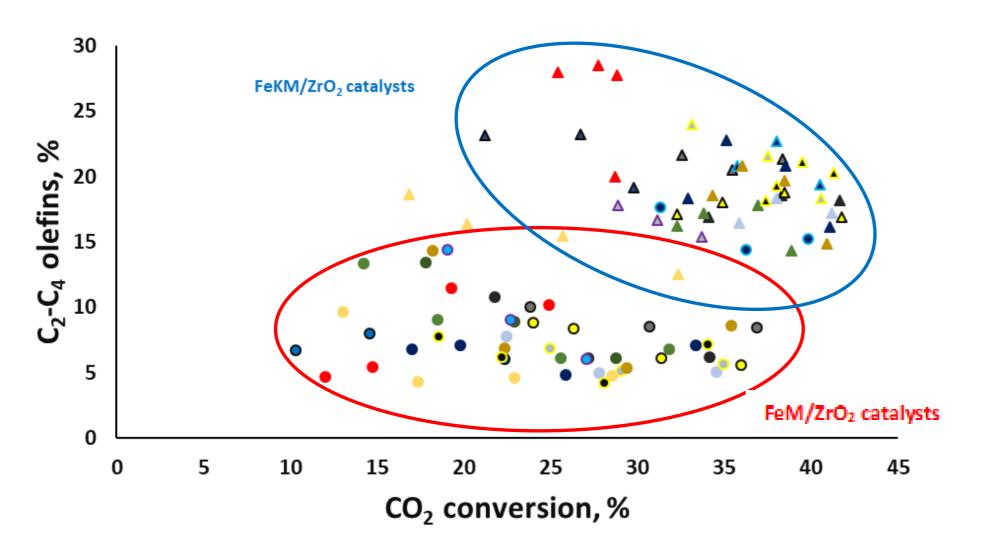
light olefin synthesis from CO₂

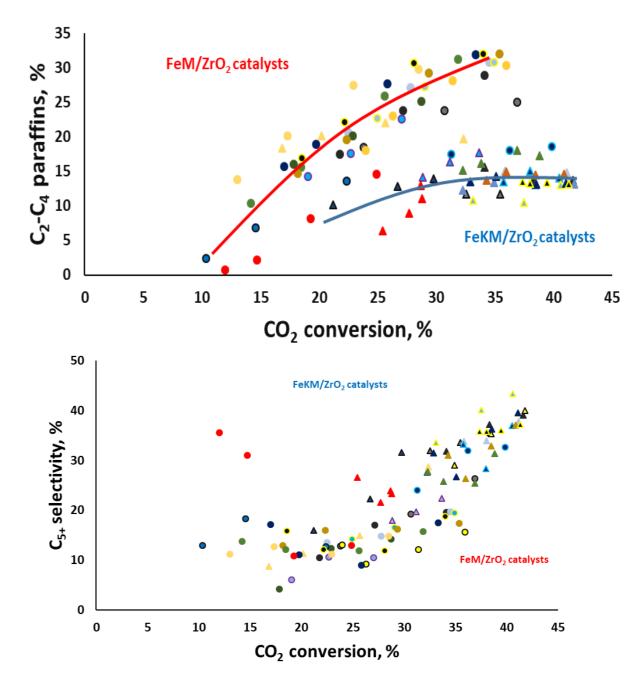


- > Fe/ZrO₂ was used as reference
- > Promoted catalyst show higher activity than reference one
- pronounced More for the K promoted catalyst

T= 350 °C, $H_2/CO= 3$, P= 10 bar

light olefin synthesis from CO₂

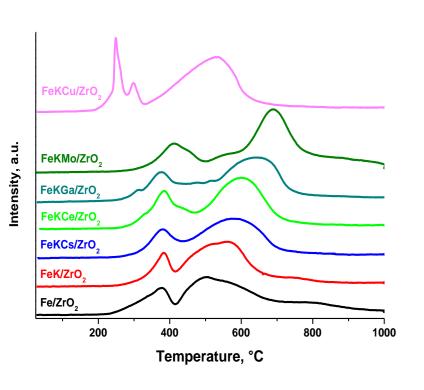




- Catalysts promoted with K showed the highest olefin selectivities
- > Most selective catalysts to lower olefins were selected to be further studied terreg

summary: catalyst parameters for light olefin synthesis from CO₂

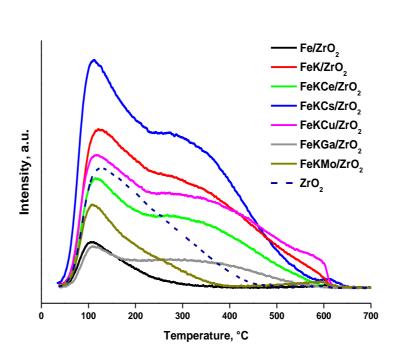
Better Fe Reducibility



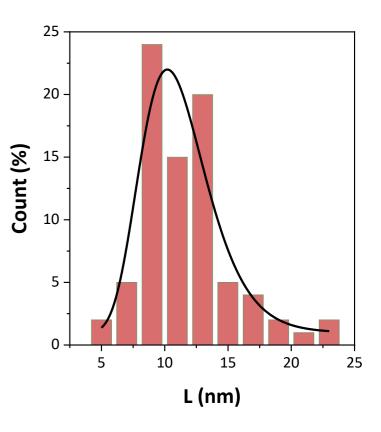
Higher extent of iron carbidization

Sample	Phase	Spectral contribution (%)
	χ-Fe ₅ C ₂	60
EakMa/7#O	ϵ '-Fe _{2.2} C	14
FeKMo/ZrO ₂	Fe _x C (SPM)	10
	Fe _{1-x} O (SPM)	16

Basicity



Better Fe dispersion



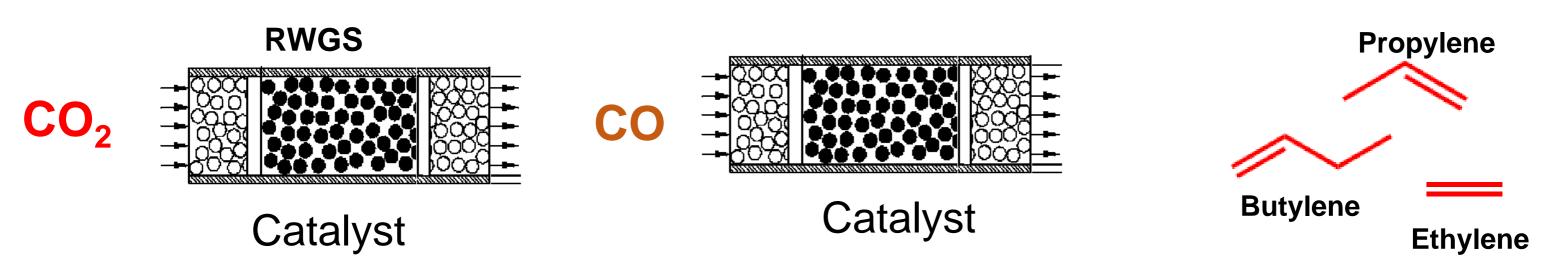
Best promoters are alkaline metals. Work better together with Cu, Mo, Ga and Ce

light olefin synthesis from CO or CO₂?

The best catalysts for hydrogenation of CO to light olefins are not good for hydrogenation of CO₂ and vice versa.

CO hydrogenation shows higher light olefin selectivity compared to CO₂ hydrogenation

Importance of sustainable hydrogen!



Selectivity to CO close to 100%

Maximum selectivity to light olefins ~ 60%

conclusions

- modeling provides crucial insights in how reaction performances relate to input and operating conditions
- balance between effort and insight is pursued
 - elementary step based modeling
 - machine learning
- Fischer Tropsch synthesis case study
 - SEMK virtual catalyst design identified descriptors for enhanced light olefin selectivity.
 - Machine Learning models for optimizing operating conditions (trained on SEMK data)
 - nonlinearities in chemical kinetics require ANN and SVR ML models over Lasso or kNN
 - interpretation techniques allow opening the black box ML models

future perspectives

o linking modeling results back to experiments

o nr. of data points for training ML models

use of ML for experimental design

Q&A

PSYCHE

<u>Acknowledgements</u>

PSYCHE

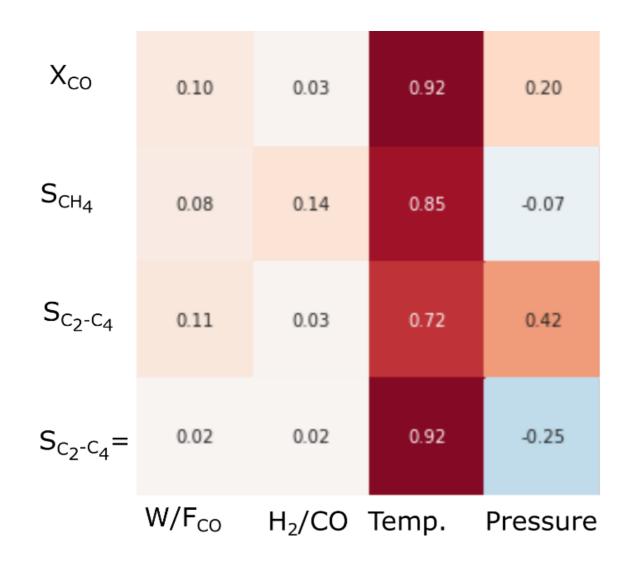
Avec le soutien du Fonds européen de développement régional

Met steun van het Europees Fonds voor Regionale Ontwikkeling

Data analysis: Correlation coefficient

0.5

-0.5

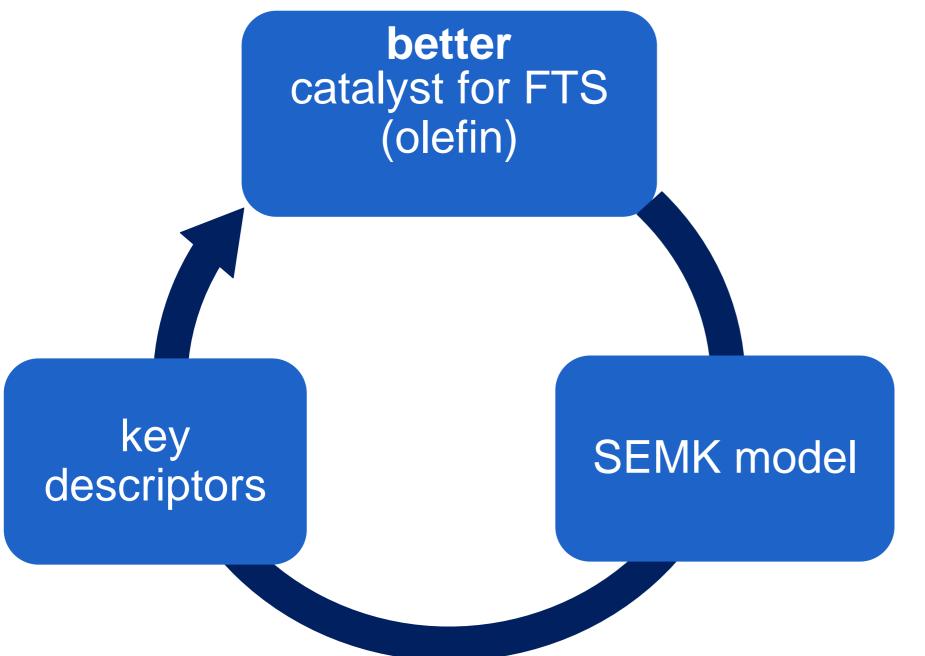


The Pearson correlation coefficient between a pair of variables(the predictor variables and the targeted FTS products.

$$r = rac{\sum_{i=1}^{n} \left(oldsymbol{X_i} - ar{X}
ight) \left(oldsymbol{Y_i} - ar{Y}
ight)}{\sqrt{\sum_{i=1}^{n} \left(oldsymbol{X_i} - ar{X}
ight)^2} \sqrt{\sum_{i=1}^{n} \left(oldsymbol{Y_i} - ar{Y}
ight)^2}}$$

- If r > 0, there exists positive correlation between two variables.
- If r < 0, there exists the negative correlation.
- The absolute value of *r* indicates the degree of correlation
- Temperature is most important process variable impacting the process.
- The impact of space time and syngas ratio is limited.

catalyst performance optimisation



- elementary kinetic models provide fundamental insight in reaction chemistry
- Single-Event Micro Kinetic (SEMK) models particularly relevant for complex mixtures
- Fe-based FTS catalysts: low cost, selectivity to olefins
- light olefin selectivity can be enhanced with promoters, e.g. Pb, Bi promoters

reaction network

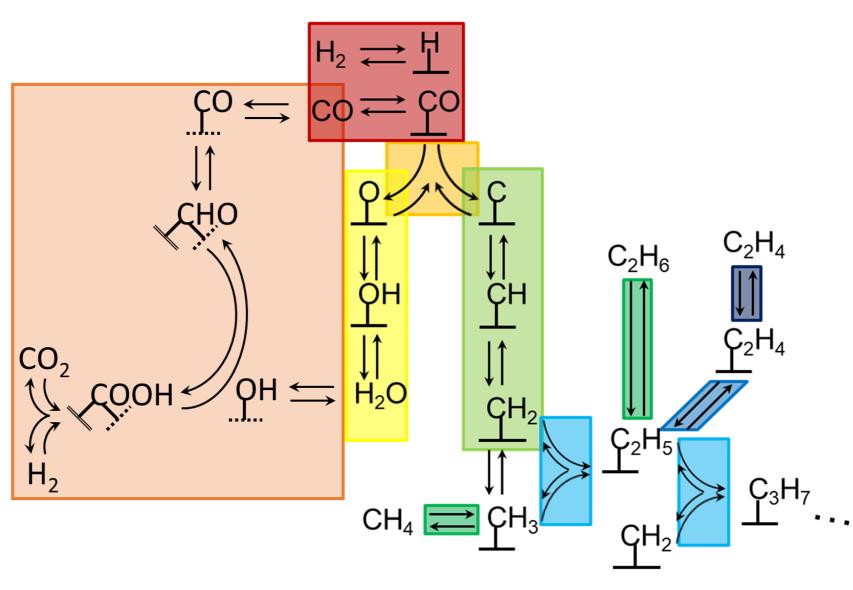
Fe-based catalyst

- ⊥ Metal in the carbide
- ...I.. Metal in the oxide phase

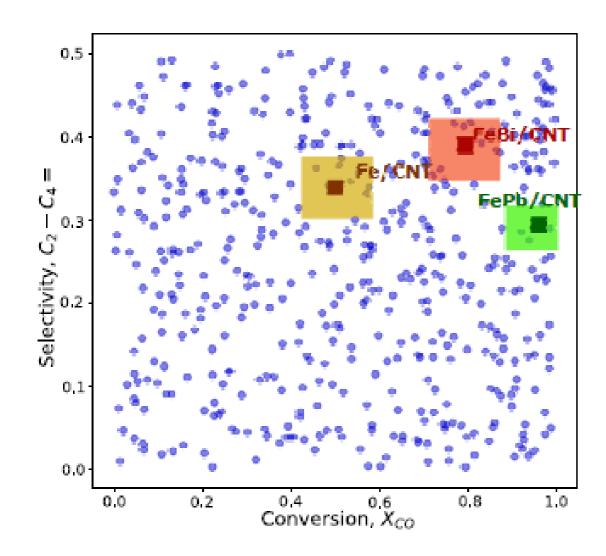
Reactions considered:

- Reactants chemisorption
- Direct CO dissociation
- Water removal by consecutive hydrogenation
- Monomer formation by consecutive hydrogenation
- Chain growth by CH₂ insertion
- Alkanes formation by hydrogenation
- Metal alkenes formation by hydrogen abstraction
- Alkenes chemisorption
- Water Gas Shift

the reaction network is considered till C₁₀ to avoid end of chain effects.



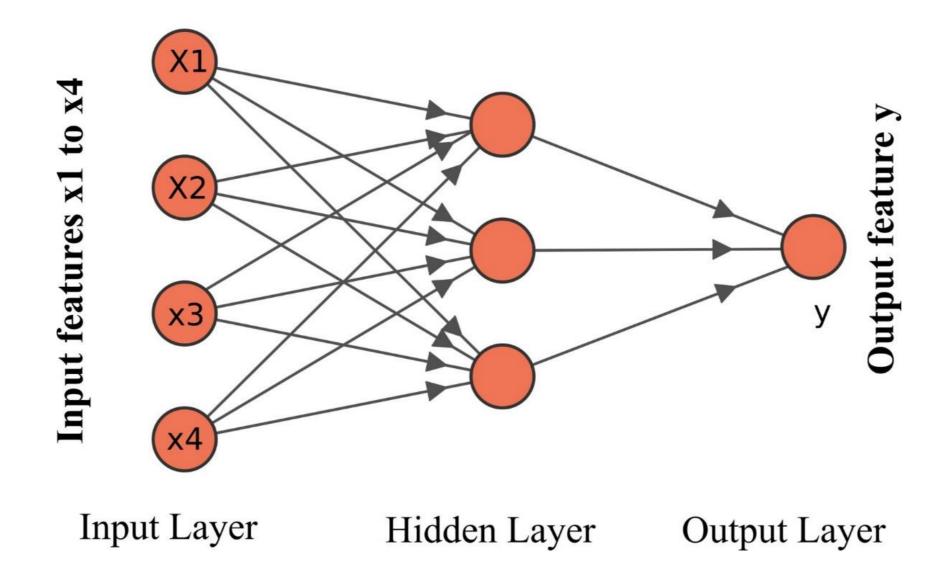
virtual catalyst screening



performance results for Bi and Pb promoted Fe catalyst, 623 K, 10 bar, GHSV = $3.4 \text{ Lg}^{-1}\text{h}^{-1}$, W_{cat} = 0.2 g

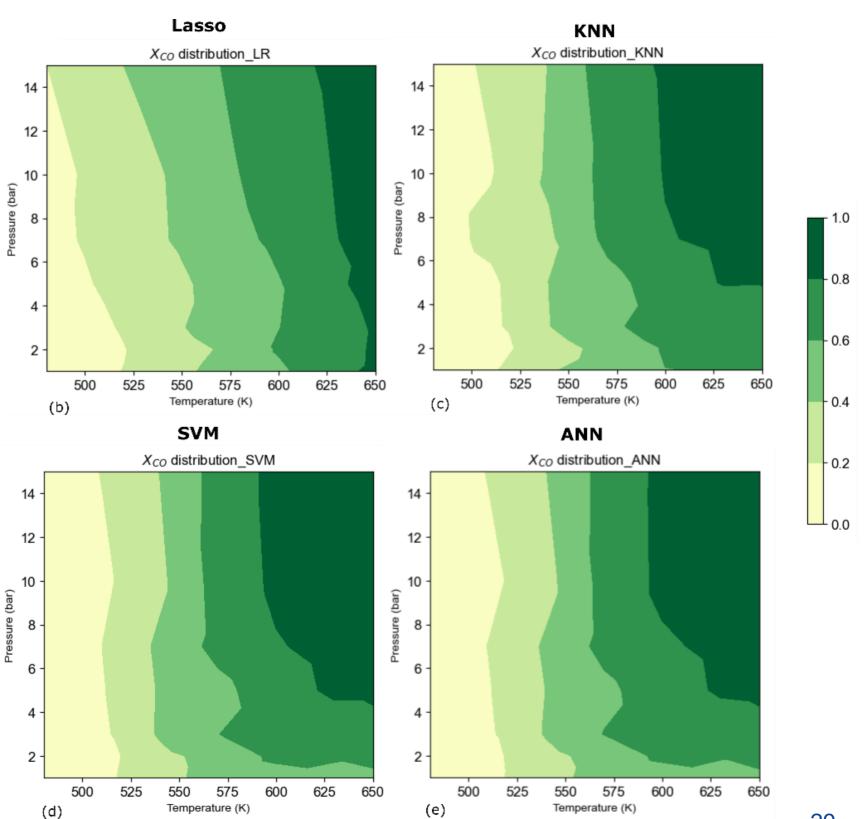
- entire catalyst descriptor space is sampled
- identification of virtual catalyst matching the experimental results.
- various performance indicators are considered:
 - light olefin selectivity (left)
 - methane production
 - heavy fraction
 - CO_2

multi-response ML model: artificial neural network



CO conversion

- conversion behaves non-linearly with temperature and pressure
- lasso regression unable to capture the nonlinear relations
- KNN, and particularly SVM and ANN more accurately



interpretability: opening the black box model

what about black box models (ANN)?

- complex models like ANN are hard to interpret.
- interpretability techniques allow usage of more complex models without losing all interpretation power.

does the ML model interpret the process variables as interpreted by the kinetic models?

- interpretation process helps in ranking the process variables based on their impact on output.
- combined effects and correlation of different input features could also be identified.

