# Microwave plasma gasification of biomass

**GEORGIOS STEFANIDIS** 





#### Thermochemical processing drawbacks

- Elevated operating pressures (~30 bar)
- Oxygen source required (autothermal)  $\rightarrow$  high cost
- Intensive feed pre-treatment  $\rightarrow$  higher cost
- Long heat-up periods at start-up



#### Plasma processing advantages

- Complete gasification (high T)
- Robust to variable feed composition
- Lower volume of oxidizing agent/Compactness
- Short start-up/down

## **Plasma gasification**



#### Arc plasma torch drawbacks

- Limited HV electrode lifespan
- Product contamination due to electrode erosion
- Low energy utilization efficiency



#### Potential MW plasma advantages

- Electrodeless (no erosion problems)/ Less maintenance
- No need for excessively high temperatures
- High electricity to thermal energy conversion (>85%)

#### MW plasma challenges

- Complex design; no established design rules
- limitation in the maximum power output from a single magnetron (100 kW continuous power delivery)
- Magnetron cost ~100 kEuro/100 kW
- Challenging scale up (lower frequency or combine MW sources)

## Microwave plasma gasification: application to a fermentor byproduct stream



Delikonstantis et al. Chem. Eng. Process Intensif., (2017) 117, 120-140.



## **Experimental setup: feeding system**



Feeding vessel

Single and double screw feeder for coarse and fine particle feeding

## **Experimental setup: plasma reactor**



Left: lower reactor assembly with enclosing drums mounted;

**Center**: full reactor assembly (inlet manifold at top cut from image), enclosing drums of lower reactor assembly removed;

**Right:** Experimental setup for plasma temperature estimation. Quartz glass window and optical spectrometer.

7

## **Experimental setup: plasma reactor**

Segment 1 (top) to 15 (bottom)



- 5 material layers
  - Borosilicate or quartz (1)
  - Brass + air (2)
  - Steel (3)
  - Copper cooling pipes (4)
  - Nickel plate (5)

#### Quartz InnerD 30 mm OuterD 34 mm Cp=730 J/kgK k=1.40 W/mK T<sub>melt</sub>=1713 °C

## **Experimental setup: gas cleaning system**





Gas conditioning branch contains four filters (in order: activated carbon, CaO, <10  $\mu$ m filter and <2  $\mu$ m filter) to eliminate moisture, solids and contaminants not allowed in the  $\mu$ -GC analyser.

## Experimental setup: thermal analysis (non-reactive experiments)



#### Settings

- o Open reactor
- $\circ \quad \text{No solids feed} \quad$
- Temperature wall = 500 °C
- o Base case parameters
  - Direct flow = 5 NI/min
    - Swirl flow = 30 NI/min
  - Air flow = 10 NI/min
  - Total flow = 35 NI/min

#### **Thermal camera**

٠

• Recording outer wall temperature in the lower part of the reactor

#### **Thermocouple K-type**

• Recording temperature at the outlet of the reactor and 10 cm higher than the outlet (890 °C and 1080 °C, respectively).

#### **Pyrometer**

o Recording temperature at the reactor wall in the waveguide (upper part of the reactor

#### **Optical emission spectroscopy**

Recording gas temperature near the ignition point (~2200 °C at 2.4 kW).

#### Heat transfer model in COMSOL

• To calculate radial heat fluxes and temperatures inside the reactor.

## **Experimental setup: thermal analysis**

Borosilicate





Quartz



Heat loss through the borosilicate wall=1052 W (44% of total 2400 W net energy input)

Heat loss through the quartz wall=1539 W (43% of total 3500 W net energy input)

## **Experimental setup: operation challenges**

**Thermal failure:** thermal shocks and hot spots cause materials deformation, swelling, and breakage



upper part of the reactor (inside the waveguide)

lower part of the reactor (close to the outlet)

## **Experimental setup: operation challenges**



Heat losses and reaction quench



Tar and solids deposition (top view)



Tar and solids deposition (side view; inside the waveguide)

## **Experimental activity**

| Biomass elemental composition CH <sub>1.50</sub> O <sub>0.49</sub> |                      |                       |                       |  |  |  |
|--------------------------------------------------------------------|----------------------|-----------------------|-----------------------|--|--|--|
| Element                                                            | Content              |                       |                       |  |  |  |
|                                                                    | wt <sub>ar</sub> [%] | wt <sub>dry</sub> [%] | wt <sub>daf</sub> [%] |  |  |  |
| Carbon                                                             | 46.1                 | 47.5                  | 55.2                  |  |  |  |
| Hydrogen                                                           | 5.8                  | 6.0                   | 7.0                   |  |  |  |
| Nitrogen                                                           | 1.2                  | 1.2                   | 1.4                   |  |  |  |
| Oxygen                                                             | 30.4                 | 31.3                  | 36.4                  |  |  |  |
| Sulfur                                                             | 0.1                  | 0.1                   | 0.1                   |  |  |  |
| Ash                                                                | 13.5                 | 13.9                  | -                     |  |  |  |
| Moisture                                                           | 3.0                  | -                     | -                     |  |  |  |

$$CCE = \frac{Total \ carbon \ out \ (product \ gas)}{Total \ carbon \ in \ (feed)}$$



$$CGE = \frac{\dot{m}_{syngas} \cdot LHV_{syngas}}{\dot{m}_{feed} \cdot LHV_{feed} + P_{torch}}$$

## Feed particle size distribution (PSD)



<1 mm particle size;  $D_{10}$ =0.07 mm;  $D_{50}$ =0.4 mm;  $D_{90}$ =0.85 mm

## Parametric study

| Case | Description                                      | Direct flow | Swirl flow | Air/N <sub>2</sub> |
|------|--------------------------------------------------|-------------|------------|--------------------|
| No   |                                                  | Nl/min      | NI/min     | NI/min             |
| 1    | Base case                                        | 5           | 30         | 10/25              |
| 2    | Constant quirl gas flow                          | 5           | 25         | 8.5/21.5           |
| 3    | Constant swin gas now                            | 5           | 20         | 7.1/17.9           |
| 4    |                                                  | 7.5         | 27.5       | 10/25              |
| 5    | Constant total (direct + swirl) flow (35 NI/min) | 10          | 25         | 10/25              |

O<sub>2</sub>/biomass feed ratio=0.3 (molar basis); Equivalence ratio=0.4

Power input: 2.1-2.4 kW



### Comparison of syngas composition with equilibrium predictions

Global gasification reaction (non-stoichiometric, homogeneous):

$$CH_{x}O_{y} + z[pO_{2} + (1-p)N_{2}] + kH_{2}O + \frac{z}{\lambda}N_{2} = aCO_{2} + bCO + cH_{2} + dCH_{4} + eN_{2} + fH_{2}O$$

*k*: defined from the moisture content; *z*: calculated from the equivalence ratio *p*: defined from the type of gasification agent (p = 0.21 for air);  $\lambda$ : is the  $\frac{\text{air}}{N_0}$  ratio

#### **Elemental balance:**



## Scaleup: lower frequency-larger volume



## Lower 915 MHz frequency generators enable

- Larger reactor volumes ~30 times
- Higher power levels, up to 100 kW

## Thermal MW steam plasma gasification – pilot scale



*Feed composition*: Indonesian brown coal (10.7% moisture, 32.5% volatiles, 22.5% ash, 34.3% fixed carbon), 70 µm powder Reactor dimensions: 1145 I reaction chamber (diameter 90 cm; height 180 cm)

Wall material: HACT180 and INCT120, inner wall temperature: 1700 °C



- 500 kW thermal power
- ~100% conversion
- 84% cold gas efficiency
- ~ 12% MW power/total power input

Uhm, H.S. et. al., International Journal of Hydrogen Energy, 2014, 39, p. 4351-4355

## Conclusions

Gasification of a real fermenter by-product stream to syngas, in presence of  $air/N_2$  mixture is possible in a continuous flow microwave plasma-assisted gasifier.

Carbon conversion efficiency of 89% and near equilibrium syngas composition  $H_2$ :CO:CO<sub>2</sub> = 41:53:6 (on molar basis) are attained when operating at the optimum operating window: direct/swirl flow = 5:20 (air/N<sub>2</sub> = 7.1/17.9), biomass feed rate = 0.1 g/s and power input = 2.3 kW

The cold gas efficiency (41% max in this work) can substantially be improved with:
a) proper insulation of the reactor to minimize energy losses
b) optimization of the flow patterns (swirl and direct feed flow) to maximize the contact of the hot plasma zone and the biomass particles