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Abstract 

 

Recycling multilayer plastic packaging is challenging due to their intrinsic compositional 
heterogeneity. A promising route to increase recycling rates for these materials is 
delamination which allows recycling the polymers separately. Yet, this process is not well 
fundamentally understood. This study aims to obtain first principles-based insights of the 
delamination mechanism of multilayer flexible packaging film (MFPF) with carboxylic acids. 
Delamination of MFPFs was described through a model based on Fick’s first law of diffusion 
and first-order dissolution kinetics of polyurethane (PU) adhesives. The model was 
experimentally tested on 5 different MFPFs at different temperatures (50-75 °C), formic acid 
concentrations (50-100 v%) and solid/liquid (S/L) ratios (0.005, 0.025 and 0.12 g/mL). Under 
the studied conditions the model proved to successfully estimate the delamination time of 
MFPF with the average Theil’s Inequality Coefficient (TIC) value of 0.14. Essential for scaling-
up delamination processes is that it is possible to use high S/L ratios as the solubility of the 
adhesive is rarely limiting. 
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Introduction 

 

Plastic packaging which corresponds to approximately 40% of the plastic volume produced, is 
used in various applications such as food, beverages, cosmetics and pharmaceuticals.[1] 
Although the general perception of plastic packaging is far from positive due to the generation 
of high amounts of waste, it offers numerous advantages such as providing protection towards 
contamination, extending shelf life of products and displaying product information.[2] In 
addition, its thin structure and lightweight result in lower energy consumption during its 
production and lower transport costs compared to alternatives such as glass, paper, aluminum 
cans etc., as such creating a cascade of economic and environmental benefits throughout the 
entire value chain.[3,4]  

Plastic packaging is sometimes laminated with different polymer layers to obtain 
superior physicochemical properties (Figure 1), as such improving its functionality by e.g. 
increasing shelf life. For example, sealing properties of polyethylene terephthalate (PET) are 
known to be an issue, thus it is often laminated with polyolefins.[5] Also, the use of an 
aluminum (Al) layer allows protection against UV light, preserving the nutritional value of the 
products by avoiding photo-oxidation reactions.[5] Although the combination of different 
polymer layers broadens the functionality and application area of plastic packaging, the 
recyclability of multilayer flexible packaging film (MFPF) decreases. During mechanical 
recycling, for instance, incompatibility issues may arise in these polymer blends, such as 
polyethylene (PE) and PET.[6] Similarly, heterogeneous polymers e.g. PET, polyamide (PA), 
polycarbonate (PC) etc. cause contamination of polyolefinic plastic waste in thermochemical 
recycling.[7,8] Therefore, these complicated multilayer plastic film fractions are still mainly 
incinerated or landfilled to date.[9]  

 

 
Figure 1. An example of a multilayer flexible packaging film structure (adapted and redrawn from Dixon et al. 
[10] ) 

 

One of the options to increase the recycling rate of MFPF is to use compatibilizers 
during mechanical recycling to improve the miscibility of polymer blends.[6] Although there is 
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still extensive research on the theory and mechanism of compatibilizers, their use in industry 
is limited since they are rather expensive and sophisticated.[7,11–13]  

Recently, there is also a growing interest towards replacement of multilayer packaging 
by monolayers in order to eliminate processing problems related to complexity of multilayers. 
For example, the RecycleReady Technology of DOW® (USA) allows for the substitution of 
heterogeneous multilayer packaging, e.g., containing PET and PE, by a PE-based monolayer 
packaging.[14] Similarly, Borealis and Borouge present a monomaterial PE for flexible packaging 
based on the proprietary Borstar® bimodal technology in combination with machine direction 
oriented (MDO) processing technology.[15] Although single layer packaging is promising to 
enhance circularity of flexible packaging, it is not easy to achieve the combination of functions 
that typical multilayer structure can provide. Therefore, it is not unthinkable that multilayers 
will continue to be used provided that there is an option to separate the layers efficiently.  

A first option to separate MFPFs is selective dissolution-precipitation of constituent 
polymer layers. For example, in the patented method of Thome et al. polyolefins were 
dissolved selectively from a composite packaging containing various synthetic polymers by 
using cycloalkanes, n-alkanes and isoalkanes. After nonsoluble components were removed, 
the solution is dispersed in an aqueous solution to precipitate the polyolefin fraction.[16] 
Similarly, in the study of Mumladze et al. switchable hydrophilic solvents were used to 
delaminate MFPF waste by dissolving PE layer selectively.[17] In the patented method of Lynch 
et al., multilayer structures were sequentially dissolved in a single solvent by creating a gradual 
increase in temperature in order to obtain pure polymer fractions.[18] Although there are 
several studies and patents focusing on selective dissolution-precipitation of the target 
polymer to separate multilayer components, many of them are primarily focused on 
recovering the polyolefins.[18–23] In contrary, in the study of Walker et al.[24], all the constituent 
polymer layers of multilayer plastic packaging (PET, PE and EVOH) were recovered through 
solvent-targeted recovery and precipitation (STRAP) with nearly 100% material efficiency and 
at a cost comparable to the virgin materials. This indicates that STRAP process would become 
competitive to design solvent systems for recycling of MFPFs.  

A second option is delamination of MFPF by selectively decomposition of polymer 
layers.[25] For example, Kulkarni et al. studied the recovery of Al from multilayer packaging 
structures by depolymerizing PET and PA via the use of sub and supercritical water.[26] Also 
sulfuric acid was proposed at different concentrations to degrade PET from a MFPF consisting 
of PET and PE layers.[27] Although the results of chemical decomposition of interlayers are 
promising in terms of polyolefin recovery, degradation products remain as impurity in the 
solution affecting the recovery of medium adversely. For example, in a study on selective PET 
degradation, it is shown that the energy consumption for the solvent and product recovery 
leads to the major part of the greenhouse gas (GHG) emissions.[25] 

A third option towards delamination of MFPF is by dissolution of the tie layers used to 
laminate dissimilar polymer layers. These tie layers typically consist of polyurethanes (PU), 
acrylates, acid anhydrides, etc. Several studies describe the separation of polymer–aluminum 
multilayer packaging by using organic solvent systems.[16,28] For example, the patented 
method of Panagiotis et al. comprises preconditioning the cured composite laminate material 
by soaking in one or more solvents such as water, benzyl alcohol, acetone, methyl ethyl ketone 
(MEK), or combination of one or more thereof to delaminate composite laminate materials.[29] 
Although extensive studies are ongoing on using solvents as a delamination agent, the choice 
of the solvent is dependent on the type of plastic laminates. In addition, since the solvents 
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mainly cause swelling of the interlayer binder, residues of adhesion promoters remain on the 
separated polymer layers.[30]  

Alternatively, acids are also used as a delaminating agent towards delamination of 
broader range of multilayer structures.[31,32] For example, in the patented method of Massura 
et al. protonic carboxylic acids such as acetic acid are mixed with organic solvents to increase 
the solubility of adhesives for the separation of polymer, Al and/or paper from multilayered 
films.[32–34] Similarly, inorganic acids such as nitric acid, phosphoric acid are also used for 
delamination of Al containing composite packaging or industrial refuse in various patents.[35,36] 
Compared to solvent-based delamination, acid-based delamination was the first technology 
to reach to the fully industrial stage. [37] For example, the patented Saperatec technology 
(Germany) performs delamination of Al containing multilayer packaging in a pilot scale with a 
capacity of 17 kt/a by using short chain carboxylic acids in combination with a swelling 
agent.[38,39] Likewise, in China recycling of composite packaging waste is carried out in a 
continuous industrial scale with a capacity of 50 t/d through Al-PE delamination using formic 
acid and nitric acid.[37,40,41] Although these technologies are able to obtain raw materials of 
high purity, they are limited to processing a single type of plastic structure at a given point in 
time. In all these cases it seems quite plausible that the processes can be improved if the 
fundamental understanding of the delamination mechanism would be improved.[30]  

To the best of our knowledge, there is no detailed scientific study available on 
understanding of the (carboxylic) acid-based delamination mechanism. This is surprising as 
there are stringent recycling targets, for example the Packaging and Packaging Waste Directive 
introduces a new plastic packaging recycling target of 55% to be reached by 2030.[42] 
Delamination is one of the promising routes to achieve this ambitious recycling rate, as also 
emphasized by various organizations such as among others, Ellen MacArthur Foundation, 
Netherlands Institute for Sustainable Packaging (KIDV) and Community of Practice Laminate 
Packaging (CoP).[43–45] Therefore, the objective of this study is to gain fundamental 
understanding into the delamination mechanism of MFPF with carboxylic acids by: 

 Investigation the effect of alkyl chain length of carboxylic acids on diffusivity, followed 
by confirming the results through comparison of the delamination rate of the 
multilayer samples in different acid media; 

 Understanding the theoretical aspects for delamination such as diffusivity of acids 
through different polymer layers and the solubility of pure adhesives in these acids; 

 Developing a fundamental kinetic model based on diffusivity and solubility 
phenomena, followed by development of a model for the delamination process of 
different MFPFs; 

 Confirmation of the fundamental kinetic model through case studies performed on 
different MFPFs at different experimental conditions such as temperature, acid 
concentration and solid/liquid (S/L) ratio. 

 

Experimental Section 

 

Multilayer samples, chemicals and reagents 
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Colored multilayer flexible packaging films (MFPFs) with different compositions given in Table 
1, were supplied by Siegwerk Druckfarben AG & Co next to the constituent polymer films and 
the cured aromatic solvent based (SB)-polyurethane (PU) and solvent free (SF)-PU adhesives. 
Among these provided multilayer samples, sample A and B are mainly used as food packaging 
since Al provides superior protection towards light and oxygen. Also the cast propylene (cPP) 
offers higher sealing strength and glossy appearance, making the food packaging more 
appealing.[46] Sample C, D and E are used as packaging for hygiene and also food products. 
Compared to untreated PET films, corona treated PET films (corona PET) and chemically 
treated PET films (chemPET) are more suitable for the packaging industry since they provide 
better bonding towards coatings or printing inks due to increased surface energy.[47,48] In the 
kinetic and case studies, the MFPFs were used as received at particle sizes of 20×20 mm. 

Formic acid (≥98%) was supplied by Sigma Aldrich (Merck). 85 v%, 75 v% and 50 v% 
formic acid solution was prepared by diluting with water. Acetic acid (≥99%), hexanoic acid 
(≥99%) and decanoic acid (≥99.5%) used for comparison of diffusivity were supplied by Sigma 
Aldrich (Merck). 

 
Table 1. Multilayer flexible packaging film samples and their respective composition. 

Sample 
code 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

A Corona PET  
(Type A) 

Polyvinyl 
chloride (PVC) 
inks 

SB-PU 
adhesive 

Al SB-PU  
adhesive 

cPP 

B Corona PET 
(Type B) 

PU inks SB-PU 
adhesive 

Al SB-PU 
adhesive 

cPP 

C Corona PET 
(Type B) 

Nitrocellulose 
(NC) inks 

SF-PU 
adhesive 

White PE   

D Corona PET  
(Type A) 

Polyvinyl 
butyral (PVB-
color) & PVC 
white inks 

SF-PU 
adhesive 

Transparent 
PE 

  

E Two-component 
(2K)-matt lacquer 

ChemPET NC & PU 
white inks 

SB-PU 
adhesive 

Transparent  
PE 

 

 

Diffusivity of carboxylic acids through a single polymer film 
 

A closed-loop permeation test unit (NBN/ISO 6529) was used to measure the diffusivity of 
acids through a single polymer layer. In this unit (Figure 2), one side of a polymer film, placed 
between the chambers of the cell with diameter of 3 cm, is exposed to the acid while the other 
side is continuously rinsed with a carrier medium, water (100 mL). The unit is combined with 
a heating element and a temperature sensor in order to set different temperatures and also 
with an agitator to distribute the temperature equally over the acid containing column. As the 
acid passed through the polymer film and mixes with the carrier medium, the change in 
conductivity was recorded continuously every second via a conductometer (Methrohm 660) 
and simultaneously a permeation plot indicating µS/cm versus time (s) was shown by the 
Code-Parmer USB-based data acquisition software. Due to insufficient sensitivity of the 
conductometer to record the changes in seconds time interval, stairstep conductivity changes 
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were observed. These conductivity values were converted to acid concentration through 
elaborated calibration curve using acids at known concentrations (Figure S2).  

 

 
Figure 2. Schematic presentation of the permeation unit used to measure diffusivity of acids. 

 

With the permeation unit, untreated polymer films constituting the studied multilayers were 
used to test the diffusivity of formic acid. Samples were thus not taken from the delamination 
experiments themselves for permeation tests. Formic acid diffusion was tested at different 
temperatures ranging from room temperature (RT) to 75 °C and at different concentrations 
ranging from 75 v% to 100 v%. In addition to formic acid, 100 v% acetic acid, hexanoic acid 
and decanoic acid were also tested at 75 °C in order to investigate the effect of alkyl chain 
length of acids on the diffusivity.  

 

Kinetic studies on MFPFs and pure PU adhesives 
 

Kinetic studies were performed on the delamination of MFPFs by testing different 
experimental conditions (Figure 3). Delamination of MFPFs was carried out in a round bottom 
flask equipped with a condenser and a magnetic stirrer for stirring at 400 rpm. The 500 mL 
flask, containing formic acid (100 mL) at different concentrations, was placed into an oil bath 
at RT and preheated to the target temperature prior to the addition of multilayer samples 
( 0̴.5 g) in order to minimize the delays to reach the specified temperature at atmospheric 
pressure. At every time interval (every min during first 5 min, followed by 5, 10 and 20 min 
intervals), 1 mL aliquot of liquid sample was collected from the delamination solution. The 
collected sample was then transferred into a vial and immersed in an ice bath to interrupt the 
dissolution of the (PU) adhesive. Afterwards, these collected samples were analyzed via UV-
VIS measurements in order to measure the delamination rate by following the PU 
concentration change based on a calibration curve. The delamination rate of multilayer 
samples was calculated based on the PU concentration in the acid medium. During 
delamination, the PU adhesive in contact with the acid starts to dissolve. When dissolution of 
100% PU adhesive is achieved, this implies complete delamination of the multilayer sample. 

Furthermore, kinetic studies were performed on pure SB-PU and SF-PU adhesives in 
order to investigate their dissolution kinetics at different temperatures and acid 
concentrations. During these kinetic studies, based on the solubility of adhesives in formic 
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acid, around 0.1 g and 0.07 g of SB-PU and SF-PU adhesives, respectively were brought into 
contact with 100 mL of formic acid solution. During dissolution, 1 mL aliquots were collected, 
which were analyzed via UV-VIS to follow the dissolved amount of adhesives by time. 

 
 

 
Figure 3. Sequence of delamination kinetic studies performed to quantify dissolved amount of adhesive. 

 

Analytical techniques for the adhesives (PU) in the acid medium 
 

The concentration changes of the polyurethane (PU) adhesive in the acid medium were 
followed via Ultraviolet-Visible spectroscopy (UV-VIS) on UV-1280 multipurpose UV-VIS 
Spectrophotometer with a scan range of 190 to 1100 nm. The collected 1 mL aliquots were 
transferred using a 1-mL disposable plastic pipette into a semi-micro quartz cuvette with an 
outer cell dimension of 12.5 mm × 12.5 mm × 45 mm and an optical path-length of 10 mm. 
Pure formic acid solutions were measured as a reference. For each sample, the optical 
spectrum measurements were repeated 3 times to ensure its consistency and repeatability. 
During the spectrum scan, the strongest absorption was recorded at 256 nm for both SB-PU 
and SF-PU adhesives as they are aromatic-based PUs.[49] Since the absorbance is proportional 
to concentration according to the Beer-Lambert Law,[50] diluted solutions of both adhesives 
with known concentration were measured at 256 nm and calibration curves were elaborated 
for both PU adhesives in order to calculate the concentration of dissolved adhesive during 
delamination kinetic studies as shown in Figure S2. Similarly, the solubility of both adhesives 
in formic acid was measured via UV-VIS in the temperature range of 25-95 °C (Figure 11). 

 

Characterization of delaminated polymer layers 
 

After the delamination of MFPF was completed, the separated polymer layers were 
characterized via Fourier-Transform Infrared spectroscopy (FTIR) on a Bruker Tensor 27 FTIR 
spectrometer (Figure 4). The FTIR measurements were recorded using the Omnic software in 
the range of 4000-400 cm-1, at resolution of 4 cm-1 and with 32 scans. For each FTIR analysis, 
automatic smooth and baseline correction were applied. As seen in Figure 4, multilayer 
components can be recovered without any degradation. When the carboxylic acid reaches the 
polymer-Al interface, the low pH of the acid induces the formation of a protective aluminum 
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oxide layer.[51] However, at pH below 4 ( ̴2.2 for formic acid), this layer dissolves and Al is 
exposed to formic acid, resulting in formation of aluminum formate which acts as a protective 
layer towards further acid corrosion.[52] Since concentrated formic acid was used during 
delamination, the production of hydronium ions was limited compared to the diluted systems, 
as such the reaction of Al was decreased to a large extent.[37] The presence of aluminum 
formate can be detected as a wide single band between 500 and 1000 cm−1 corresponding to 
the vibrational frequencies of coordinated O-Al-O bonds,[53] yet this is not seen in the FTIR 
spectra of the treated polymer films, indicating that oxidation of Al was negligible. 

 

 
Figure 4. a) Delamination of MFPFs to their constituent polymer layers; b) Confirmation of separated polymer 
layers of sample A via FTIR after delamination. 

 

The composition of the MFPFs and the thickness of each polymer layer and PU 
adhesives were determined by making microtome cuts of 15 μm using a Leica RM 2245 
microtome and then by placing the samples in Canada balsam and conditioning them for 24 h 
under a bench press. The samples were thereafter analyzed using Polarized Optical 
Microscopy (POM) on a Keyence VHX-500F microscope as shown in Figure 5. Since different 
type of polymers show different color under optical light, the thickness of different polymers 
and adhesives could be detected easily. The PU adhesives were visible in the microtome 
section as a thin layer of 3 µm thickness between the polymer layers.  
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Figure 5. POM image of a) sample A; b) sample E. 

 

Crystallinity of each constituent polymer film was calculated through Differential 
Scanning Calorimetry (DSC) measurements by using a NETZSCH Polyma DSC 214 under N2 
atmosphere with a flow of 20 mL min−1. Each sample was heated starting from 20 °C until 300 
°C and kept at this temperature for 5 minutes and then cooled to 50 °C at a heating/cooling 
rate of 10 °C min−1. This heating/cooling run was repeated two times. Afterwards, the 
crystallinity of each untreated single polymer film was calculated via the following formula:[54] 

𝑋𝐶 = [(∆𝐻𝑚 − ∆𝐻𝑐𝑐)/∆𝐻𝑚
0 ] × 100           Equation 1

  

where Xc is the crystallinity (%), ∆Hm (J/g) and ∆Hcc (J/g) are the measured melt and cold 
crystallization enthalpy of each polymer, respectively, and ∆H0

m (J/g) is the melting enthalpy 
of 100% crystalline polymer.[55]  

Based on POM and DSC measurements, the thickness of each polymer layer 
constituting MFPFs and their crystallinity are indicated in Table 2. 

 

Table 2. Thickness and crystallinity of each polymer film constituting MFPF samples. 

Polymer type Thickness [cm] Crystallinity [%] 

ChemPET 0.0012 29.96 
Corona PET (Type B) 0.0012 32.39 
Corona PET (Type A) 0.0012 26.73 
Transparent PE 0.0060 37.47 
White PE 0.0063 35.97 
cPP 0.0061 34.26 

 

The density of both cured SB-PU and SF-PU adhesives was measured as 1.1 g/cm3 via a 
density scale on Kern EMB-V. Based on POM and density measurements, the mass of each 
adhesive layer in the MFPF samples was calculated as 0.00033 g/cm2 and it is assumed that 
the adhesive is homogenously distributed over the polymer surface. Since sample A and B 
contain 2 layers of PU adhesive, this amount is multiplied by 2 during delamination rate 
calculations as shown in Equation 2 and Equation 3. 

𝑀𝐴 =
𝑀𝑇𝑜𝑡𝑎𝑙

𝑀𝑀𝐹𝑃𝐹
× 0.00033 (

𝑔

𝑐𝑚2) × 𝐴 × 𝑛                             Equation 2   
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𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑎𝑑ℎ𝑒𝑠𝑖𝑣𝑒 (%) =
𝑀𝑡

𝑀𝐴
× 100            Equation 3 

where 𝑀𝐴 is the total mass of adhesive present in the MFPF (g), 𝑀𝑇𝑜𝑡𝑎𝑙  is the total mass of 
MFPF used for the delamination experiment (g), 𝑀𝑀𝐹𝑃𝐹  is the mass of one MFPF particle (g), 
𝐴 is the surface area of one MFPF particle (cm2), n is the number of adhesive layers in the 
MFPF and 𝑀𝑡 is the mass of adhesive in the acid medium at a specific time during kinetic 
studies (g). 

 

Kinetic modelling 
 

Delamination of MFPFs is in principle the combined process of diffusion of acid through the 
polymer layers and dissolution of adhesives when in contact with the acid. Therefore, the 
delamination kinetics of the MFPFs is described fundamentally based on diffusivity and 
solubility phenomena.[56,57] The diffusion of the acid through the various polymer layers is best 
described by Fick's first law since linear diffusion curves (diffused acid amount vs. time) were 
obtained once steady-state was reached. In addition, as the time needed to reach steady state 
was too short with respect to the time frame of the whole process, the influence of the 
transient part of the diffusion was negligible, making Fick's first law suitable to describe the 
diffusion process. Based on Fick's first law, the flux of acid (mg/(cm2.s) through a single 
polymer layer is described by the following equation: [58,59] 

𝐽 =
𝐷𝑖

𝑙
(𝑐𝑖,0 − 𝑐𝑖,𝑙) = 𝑘(𝑐𝑖,0 − 𝑐𝑖,𝑙)             Equation 4 

where 𝐷𝑖  is the diffusion coefficient (cm2/s), 𝑘 is the mass transfer coefficient (cm/s), 𝑙 is the 
polymer thickness (cm) and 𝑐𝑖,0 and 𝑐𝑖,𝑙 are the concentration of acid in the feed side and the 
permeation side (mg/cm3), respectively.  

 By using the flux of acid, J, the total diffused amount of acid, Q (mL) through each 
polymer layer is described by the following equation:[60] 

𝑄 =
𝐽∗𝐴∗𝑡

𝜌
=

𝐷𝑖
𝑙

(𝑐𝑖,0−𝑐𝑖,𝑙)∗𝐴∗𝑡

𝜌
            Equation 5 

where 𝐴 is the surface area in contact with the acid (cm2), 𝑡 is the time interval (s) and 𝜌 is the 
density of the acid (kg/cm³).  

As the concentration at the permeation side is very low compared to the bulk of the 
system, the concentration at the permeation side is negligible (𝑐𝑖,𝑙≈0). Consequently, Equation 

5 can be simplified to:  

𝑄 =
𝐷𝑖
𝑙

∗𝑐𝑖,0∗𝐴∗𝑡

𝜌
                                       Equation 6 

Diffusion of acid through each polymer layer (cm2/s) at different temperatures was 
calculated based on the Arrhenius equation: [60,61] 

𝐷𝑖 = 𝐷0 𝑒𝑥𝑝 (
𝐸𝑑

𝑅∗𝑇
)                Equation 7 
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where 𝐷0 is the diffusion coefficient constant of a specific polymer layer (cm2/s), 𝐸𝑑 is the 
activation energy of the diffusivity (J/mole), 𝑅 is the gas constant ( 8.314 J/mole.K) and 𝑇 is 
the absolute temperature (K). The experimental diffusion data of each polymer obtained 
through permeation tests were fitted to the Arrhenius equation by means of a script in R 
software using the FME package and a pseudorandom-search algorithm in order to calculate 
Do and Ed values which are given in Table S1. 

In principle, 𝐷𝑖  is the combination of the diffusion coefficient of acid through the 
polymer layer (𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟) and the boundary layer (𝐷𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦). Based on the description of the 

resistors in series approach, the relation between the overall mass transfer coefficient (𝑘𝑜𝑣), 
mass transfer coefficient of polymer (𝑘𝑝𝑜𝑙𝑦𝑚𝑒𝑟) and boundary layer (𝑘𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) is described 

as follows: [62–64]  

1

𝑘𝑜𝑣
=

1

𝑘𝑝𝑜𝑙𝑦𝑚𝑒𝑟
+

1

𝑘𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
             Equation 8    

In the permeation tests in which 100 v% acid was used, no boundary layer is formed as 
no acid concentration gradient occurs during diffusion, thus only 𝑘𝑝𝑜𝑙𝑦𝑚𝑒𝑟 was considered to 

calculate the overall mass transfer coefficient. For the systems in which diluted acid was used, 
acid concentration gradient occurs due to depletion of acid concentration, thus the overall 
mass transfer coefficient in terms of diffusivity of the polymer (with thickness of 𝑙) and the 
boundary layer (with thickness of 𝛿) can be expressed as follows: 

𝑘𝑜𝑣 = (
1

𝑘𝑝𝑜𝑙𝑦𝑚𝑒𝑟
+

1

𝑘𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
)

−1

= (
𝑙

𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟
+

𝛿

𝐷𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
)

−1

            Equation 9    

where the boundary layer thickness, 𝛿 (cm) is expressed as: 

𝛿 =
𝐷𝑖

𝑘𝑜𝑣
− 𝑙            Equation 10  

Equation 9 and Equation 10 can be combined to determine the diffusivity of the 
boundary layer (𝐷𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦): 

𝐷𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =

𝐷𝑖
𝑘𝑜𝑣

−𝑙

1

𝑘𝑜𝑣
−

𝑙

𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟

          Equation 11       

Since the overall mass transfer coefficient (𝑘𝑜𝑣) and the diffusion coefficient of the 
polymer (𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟) at different acid concentrations are known through the permeation tests, 

𝐷𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 can be calculated as shown in Equation 11. 

Regarding the solubility, the maximum solubility of pure adhesives measured through 
UV-VIS measurements was taken into account in the delamination model. First-order 
dissolution kinetics of the adhesives during delamination of MFPFs were calculated as shown 
in Equation 12.[65,66] 

𝑅𝑑𝑖𝑠𝑠 =
𝑑[𝑃𝑈𝐿]

𝑑𝑡
= 𝐾 ∗ (1 −

[𝑃𝑈𝐿]

[𝑃𝑈𝐿]𝑒𝑞
) = 𝑘𝑟 ∗ (1 − 𝛺)        Equation 12 

where 𝑅𝑑𝑖𝑠𝑠 is the dissolution rate of the adhesive (mg/(mL.s)), kr is the dissolution rate 
constant (mg/(mL.s)) and [𝑃𝑈𝐿] and [𝑃𝑈𝐿]𝑒𝑞 are the concentration of PU adhesive in the 

delamination solution and the maximum solubility of PU (mg/mL), respectively. The ratio of 
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[𝑃𝑈𝐿] to [𝑃𝑈𝐿]𝑒𝑞 is called the degree of saturation, which is indicated as 𝛺. The influence of 

temperature on the rate constant, 𝐾 is also described by the Arrhenius equation:[65] 

𝑘𝑟 =  𝐴0 𝑒𝑥𝑝 (−
𝐸𝑎

𝑅∗𝑇
)                  Equation 13 

where A0 is the dissolution constant (mg/mL.s) and Ea is the activation energy (J/mole), which 
were calculated by means of the FME package using the Levenberg-Marquardt algorithm and 
then the experimental kinetic data was fitted on the Arrhenius equation via the 
pseudorandom-search algorithm. Based on this algorithm, Ea values of SB-PU and SF-PU 
adhesive were calculated as 27460 J/mole and 33134 J/mole, respectively. Also, Ao values of 
SB-PU and SF-PU adhesive were taken as 9.84 mg/mL.s and 99.99 mg/mL.s, respectively. 
Based on the obtained dissolution rate constant values at each different temperature, the 
dissolution rate of the adhesive, Rdiss was calculated using Equation 12. 

 Based on the diffused amount of acid through the plastic films (𝑄) obtained through 
permeation tests and the dissolution kinetics of pure PU adhesives obtained through kinetic 
studies at different experimental conditions, the delamination rate of MFPFs can be 
estimated. Figure 6 gives an overview of the three-stage process: 

1) There is a period of acid diffusion through the polymer layers. 
2) The diffused acid starts dissolving the adhesive slowly. As more acid diffuses through 

the polymer layers, dissolution of the adhesive increases gradually.  
3) All adhesives are dissolved and the layers disconnect from each other, indicating a 

complete delamination of the multilayer sample. 

For the MFPF samples without an Al layer, the diffused amount of acid is summed up and 
the whole multilayer sample is considered as a single system with respect to the dissolution 
kinetics as shown in Figure 6a. However, for the multilayer samples containing Al layer such 
as sample A and B, each side of the Al layer is considered as a separate system, as the Al is 
considered impermeable by the acid, and the dissolution kinetics of each system are 
determined separately based on the corresponding diffused amount of acid as indicated in 
Figure 6b. Since the kinetics of acid diffusion through the diverse polymer layers are different, 
the PU adhesive is not dissolved at the same rate in each side of the Al layer. Therefore, a 
converging point is observed in the delamination rate graphs for such multilayer samples 
(Figure 6b).  

The error analysis of the fundamental kinetic model to the experimental data was 
performed using validation techniques such as Sum of Square of Errors (SSE) and Theil’s 
Inequality Coefficient (TIC). 
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Figure 6. Delamination mechanism of MFPF a) without an Al layer; b) with an Al layer. 
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Results and discussion 

 

The influence of alkyl chain length on the delamination rate 
 

Based on literature data it is expected that shorter chain carboxylic acids are a more effective 
delamination medium as they diffuse faster.[67] In order to confirm this hypothesis, 
permeation tests were performed on PP and chemPET films at 75 °C by using 100 v% formic 
acid, acetic acid, hexanoic acid and decanoic acid, separately. Based on calibration curves of 
each acid (Figure S1), the obtained conductivity values with permeation tests were converted 
to the diffused amount of acid through the polymer films as a function of time as shown in 
Figure 7. In case the diffusion of acid through a certain polymer film is low, the conductivity 
change becomes slower, as such bigger gaps are seen between the stairstep changes. In order 
to compare the diffusion of acids through different polymer films equally, the effect of 
polymer thickness on diffusivity was eliminated by multiplying the diffused amount of acid (Q) 
with the corresponding polymer thickness as indicated in Table 2.  

 

 

 
Figure 7. Diffused amount of different carboxylic acids (µg/cm2) through PP and chemPET at 75 °C. 

 

As seen in Figure 7, the diffused amount of acid decreases as the alkyl chain length of 
the carboxylic acids increases. The fastest diffusion through both PP and chemPET is observed 
with formic acid whereas decanoic acid shows the slowest diffusion. Comparing the diffusion 
through PP and chemPET indicates that diffusion of longer chain carboxylic acids is relatively 
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faster through apolar polymers (e.g. PP) compared to polar ones (e.g. PET). Interestingly, 
although a fast diffusion rate through PP is observed for both formic and acetic acid, the 
diffusion of acetic acid through chemPET is more than 20 times slower compared to the 
diffusion of formic acid. This might be due the fact that the polarity of the acid decreases as 
its chain length increases. For example, hexanoic acid is more apolar compared to formic acid 
due to its longer alkyl chain. Therefore, the diffusion rate of hexanoic acid through PP is 
relatively faster than through chemPET, whereas for a small more polar molecule like formic 
acid, diffusion is faster through chemPET. In addition to the effect of polarity, higher 
crystallinity of PP would also cause slower diffusion compared to chemPET as indicated in 
Table 2, despite the fact that the experimental temperature of 75 °C is well above the glass 
transition temperature (Tg) of PP (  ̴ -13 °C).[68]   

Since the diffusion rate of acids through PP and chemPET is inversely proportional to 
acid chain length as shown in Figure 7, it is expected to observe slower delamination with 
longer chain carboxylic acids. In order to investigate this, kinetic studies were performed on 
sample B with particle size of 4 cm2, constituting of corona PET and PP films, by using 100 v% 
formic acid, acetic acid and hexanoic acid, separately at 75 °C. Based on the elaborated 
calibration curve of the PU adhesive in each acid via UV-VIS measurements and the theoretical 
amount of adhesive existing in the sample B, the dissolved SB-PU adhesive (%) by time was 
calculated via Equation ( 3 ) and the obtained results are shown in Figure 8. 

 

 
Figure 8. Kinetics of SB-PU adhesive dissolution (%) as a function of time during delamination of sample B in 
contact with different acids at 75 °C.  

 

As seen in Figure 8, the dissolution rate of SB-PU adhesive is fastest with formic acid, 
followed by acetic acid and hexanoic acid, respectively. For example, while  9̴7% adhesive 
dissolution is observed with formic acid in less than 2000 seconds, only  1̴4% dissolution is 
obtained with hexanoic acid in the same time interval. These results clearly indicates that alkyl 
chain length has a significant impact on delamination rate of MFPFs. Therefore, in this study 
formic acid is selected as a superior medium to delaminate, and therefore the next sections 
focus on formic acid only.  
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Theoretical aspects of delamination of MFPFs 
 

Delamination of MFPFs is a combined process of diffusion of acid through the polymer layers 
and dissolution of adhesives when in contact with the acid. Therefore, in principle 
delamination mechanism can be explained by combining diffusivity and solubility. Since 
different factors affect these processes such as type of polymer, acid concentration and 
temperature, diffusivity of formic acid through each single polymer film and solubility of pure 
cured PU adhesives were investigated under different experimental conditions. Based on the 
obtained results, the best-fit fundamental kinetic model was used in order to describe the 
delamination of diverse MFPFs.  

 

Diffusivity 

 

Diffusivity of the formic acid through the polymer layers depends on the type of the polymer, 
but also on the temperature. In order to investigate this, permeation tests were performed 
on the six different polymer films present in our selection of MFPFs in the temperature range 
between 50 °C and 75 °C with 100 v% formic acid. The obtained conductivity values were 
converted to the amount of acid diffused by considering the thickness of each polymer film 
(µg/cm2) and the results are shown in Figure 9. 

 

 
Figure 9. Diffused amount of formic acid as a function of time through different polymer films at 50 °C (dash 
lines) and 75 °C (straight lines) with 100 v% formic acid. 
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According to the results, the diffusivity of formic acid is directly proportional to the 
temperature. As the temperature goes down from 75 °C to 50 °C, diffusion of formic acid 
halves for all polymer films. Regarding to the type of polymer, the slowest diffusion is observed 
through PP at both temperatures due to its lower polarity and higher crystallinity despite of 
its low Tg (   ̴-13 °C).[69] Interestingly, the fastest diffusion is observed through transparent PE 
film at 75 °C. Although the crystallinity of transparent PE is higher than PET films as shown in 
Table 2, the operating temperature of 75 °C is well above the Tg of PE (- 125 °C), resulting in 
increased chain movements within the polymer structure.[69] In addition, it is observed that 
diffusion through transparent PE is affected by the temperature increase to a larger extent 
compared to the other polymer films. For example, when the temperature is decreased to 50 
°C, the diffusion of formic acid through transparent PE is decreased by a factor of 8, confirming 
that glass transition temperature can be an important factor, with most pronounced effect on 
PE in this case in the selected working area of formic acid. Based on the diffusion rate of formic 
acid at different temperatures, the diffusion coefficient of formic acid through each polymer 
film has been calculated as described in the ‘kinetic modeling’ section using Equation 7 and 
the obtained values are shown in Table 3. 

 

Table 3. Diffusion coefficients for a series of polymer films (cm²/s) at 50 °C, 65 °C and 75 °C. 
 Diffusion coefficient [*10-11cm²/s] 

T (°C) Corona PET 
(Type A) 

Corona PET 
(Type B) 

chemPET PE transparent PE white cPP 

50  0.16   0.48   0.33   0.32   0.08   0.17  

65  0.85   2.20   1.10   0.83   0.11   0.33  

75  1.81  2.86  1.68  2.90   0.83   0.42  

 

According to Table 3, transparent PE has the highest diffusion coefficient at 75 °C 
(2.9*10-11cm²/s), followed by corona PET (Type B), corona PET (Type A), chemPET, white PE 
and PP (0.42 *10-11cm²/s), respectively.  

Next to the temperature and type of polymer, the effect of acid concentration on 
diffusion rate has also been investigated using formic acid at concentration range between 75 
v% and 100 v% at 50 °C. The data obtained at 85 v% and 75 v% formic acid are shown in Figure 
10. According to the results, a relatively small reduction of 10 v% acid concentration decreases 
the diffusion rate with a factor of 2, especially in the case of transparent PE and corona PET 
films. Similar to the effect of temperature, the fastest diffusion is observed through 
transparent PE at both 85 v% and 75 v% formic acid (0.0002 µg/cm2and 0.0001 µg/cm2, 
respectively), while the lowest diffusion rates are obtained for PP and white PE layers at both 
acid concentrations (0.000037 µg/cm2and 0.000038 µg/cm2, respectively). In addition, it is 
noticed that temperature is a more important factor compared to concentration for 
transparent PE, while it is the other way around for corona PET.  
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Figure 10. Diffused amount of formic acid through different polymer films with 85 v% (dash lines) and 75 v% 
(straight lines) formic acid at 50 °C as a function of time.  

 

Solubility 

 

The overall delamination rate of MFPFs depends not only on the diffusion rate of formic acid, 
but also on dissolution kinetics of the adhesive present between the layers. When formic acid 
diffuses through polymer layers and reaches the adhesive, it starts to dissolve the adhesive 
and the delamination process starts. As the dissolution rate of adhesives is determined by 
their solubility, firstly the solubility of both adhesives in formic acid was measured via UV-VIS 
in the temperature range of 25-95 °C as shown in Figure 11.  
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Figure 11. Solubility of a) SB-PU adhesive and; b)SF-PU adhesive (g/100 mL solvent mixture) in the temperature 
range of 25-95 °C. 

 

As seen in Figure 11, there is a big difference between the solubility of SB-PU and SF-
PU adhesive in formic acid. For example, at 95 °C while the solubility of SB-PU adhesive is 0.184 
g/L , the solubility of SF-PU adhesive is only 0.0073 g/L. Therefore, during the delamination of 
MFPFs containing SF-PU adhesive, a lower amount of multilayer sample was used in order to 
eliminate saturation of adhesive in the acid medium, as such allowing 100% delamination. 

It is generally accepted that the solubility depends on temperature and concentration 
of solvent, and therefore dissolution kinetics of pure cured SB-PU and SF-PU adhesives were 
tested at temperatures ranging from 60 °C to 100 °C and at acid concentrations ranging from 
60 v% to 100 v%. The amount of pure adhesive used in the beginning of kinetic studies were 
determined based on the solubility of adhesives in formic acid. The dissolved amount of 
adhesives by time were quantified via UV-VIS measurements.  
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Figure 12. Dissolution kinetics of pure a) SB-PU adhesive at different formic acid concentrations at 100 °C; b) SB-
PU adhesive at different temperatures with 100 v% formic acid; c) SF-PU adhesive at different formic acid 
concentrations at 100 °C; d) SF-PU adhesive at different temperatures with 100 v% formic acid. 

 

As seen in Figure 12, the dissolution rate of both SB-PU and SF-PU adhesive is directly 
proportional to the temperature and formic acid concentration, thus the fastest dissolution 
was obtained at 100 °C and with 100 v% formic acid for each adhesive. As the solubility of SB-
PU adhesive is higher than SF-PU adhesive at the same temperature, dissolution of the former 
adhesive is completed in a shorter time frame. Furthermore, dissolution of the SB-PU adhesive 
is affected to a larger extent by temperature change. For example, when the temperature is 
lowered from 100 °C to 60 °C (red and light blue straight lines in Figure 12b, respectively), a 
two-fold decrease is observed for the dissolved SB-PU adhesive (%). On the other hand, the 
SF-PU adhesive is more sensitive towards changes in formic acid concentration. For example, 
even at 100 °C the lowest dissolution (61%) is observed with 60 v% formic acid as shown in 
Figure 12c. These obtained dissolution rates of both PU adhesives at different conditions were 
used to describe delamination process of different MFPFs (Table 1). 
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Model development of the delamination process 
 

Based on the mentioned experiments, a fundamental model was developed based on Fick’s 
first law of diffusion and first-order dissolution kinetics of PU adhesives. As shown in the 
delamination mechanism of MFPF (Figure 6), in the first step the acid passes through the 
polymer layers and reaches to the adhesive layer. In order to calculate the amount of acid 
accumulated between the polymer layers (Q), firstly diffusion of acid through each polymer 
layer (Di) at different temperatures was calculated separately based on the Arrhenius equation 
(Equation 7) and the results are shown in Table 3. Since Fickian diffusion is not affected by the 
concentration, the same diffusivity values were considered for the modeling at different acid 
concentrations.[60] In principle, Di is the combination of the diffusion coefficient of acid 
through the polymer layer (Dpolymer) and the boundary layer (Dboundary). At 100 v% acid 
concentrations, the overall mass transfer coefficient (kov) is equal to the mass transfer 
coefficient of polymer (kpolymer). However, in the systems where diluted acid was used, the 
mass transfer coefficient of the boundary layer (kboundary) was also taken into account to 
calculate the kov value. By considering this, based on the experimental diffusion kinetics 
through each single polymer layer at different conditions, the overall mass transfer coefficient 
(kov) was calculated by using Equation ( 9 ) and the values are given in Table 4. In addition, 
based on these kov values, diffusivity of the boundary layer (Dboundary) and the thickness of the 
boundary layer (δ) was calculated by using Equation ( 10 ) and ( 11 ), which are also indicated 
in Table 4.  

 

Table 4. The overall mass transfer coefficient (kov) of each polymer layer, the thickness of the boundary layer 
(δ) and diffusivity of the boundary layer (Dboundary) at different T and acid concentrations.  

 kov [*10-10 cm/s]   

T [°C] acid 
conc. 
[v%] 

Corona PET 
(Type A) 

Corona PET 
(Type B) 

chemPET PE 
trans. 

PE 
white 

cPP δ  
[*10-19 

cm] 

Dboundary  
[*10-29 
cm²/s] 

50 100 49.11 35.18 13.93 7.83 0.83 0.27 - 3.06 

65 100 134.64 272.64 24.53 34.54 43.14 12.46 - 19.52 

75 100 251.29 967.96 174.09 86.52 95.07 130.10 - 61.48 

75 50 6.31 6.43 6.24 6.01 6.07 6.16 9.50 61.48 

75 75 7.57 7.75 7.47 7.14 7.23 7.37 7.87 61.48 

75 85 22.29 23.86 21.45 18.95 19.58 20.59 2.51 61.48 

 

These diffusivity values were used in the next part on the case studies to calculate the volume 
of acid passed through the polymer layer in every 0.2 seconds time interval through Equation 
6. During this calculation, the thickness of each polymer layer (l) was considered as shown in 
Table 2. The density of the formic acid (ρ) and the concentration of formic acid (c(i,0)) was 
calculated based on the temperature and the dilution factor of the acid (v%). [70,71] The ρ and 
c(i,0) values at different T and acid concentration are given in Table S2. As shown in Figure 6 
(red arrows), acid diffusion occurs through both sides of the sample, thus the total volume of 
acid passed through each polymer surface was taken into account to calculate the amount of 
dissolved adhesive. As dissolution of adhesive starts upon diffusion of formic acid to the 
adhesive layer, a small lag time occurs, as such convex type of graphs are obtained. However, 

10.1002/cssc.202002877

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemSusChem

This article is protected by copyright. All rights reserved.



as this phenomenon takes such a short time compared to the entire delamination process, 
this lag time is not taken into account in the kinetic model. In addition to frontal diffusion, 
lateral diffusion (through the sides of the multilayer sample) was investigated by performing 
delamination tests on sample B at different particle sizes. According to the results shown in 
Figure S3, the difference in total delamination time is insignificant especially at higher particle 
sizes. These results are not conclusive as measuring lateral diffusion is not straightforward. 
Nevertheless this is an indication that frontal diffusion is more profound compared to lateral 
diffusion during delamination of multilayer samples. In addition, under the studied conditions 
the kinetic model proved to successfully estimate the delamination time of MFPF with the 
average Theil’s Inequality Coefficient (TIC) value of 0.14, which is an additional indication that 
frontal diffusion is dominating over lateral diffusion.   

In the second step as shown in Figure 6, depending on the amount of acid accumulated 
between the polymer layers, dissolution of the PU adhesive starts. Dissolution rates of 
adhesives were calculated based on experimental kinetic data of pure SB-PU and SF-PU 
dissolution as presented in Figure 12 by fitting on the Arrhenius equation. Based on this, the 
dissolution rate constant, K (mg/mL.s) was calculated for both adhesives via Equation 13 and 
the results are given in Table 5. In the case studies on typical MFPFs, these K values were used 
to calculate the dissolution rate of the adhesive, Rdiss over time by using Equation 12. During 
this calculation, maximum solubility of PU adhesives, [PUL]eq was derived based on the 
experimental solubility data of each adhesive (Figure 11) and the results are also given in Table 
5. As it is assumed that the accumulated acid between the polymer layers is concentrated, the 
[PUL]eq value only changes based on the temperature. The concentration of PU adhesive in the 
delamination solution, [PUL] (mg/mL) was calculated based on the total amount of acid passed 
through both polymer surfaces of multilayer sample at each time interval and also on the 
theoretical amount of adhesive originally present in the multilayer sample. The error of fit (R2) 
for the dissolution rate constant at different conditions was calculated as 0.85 and 0.98 for 
the SB and the SF adhesive, respectively. 

 

Table 5. The dissolution rate constant (kr) and the maximum solubility ([PUL]eq) of SB-PU and SF adhesive at 
different temperature and acid concentrations. 

Adhesive type T [°C] Acid conc. [v%] kr[*10-4 mg/mL.s] [PUL]eq [mg/mL]  

SB 

75 100 7.46 8.72 

65 100 5.64 8.38 

50 100 3.58 7.30 

75 50 7.46 8.72 

75 75 7.46 8.72 

75 85 7.46 8.72 

SF 

75 100 10.68 0.71 

65 100 7.61 0.71 

50 100 4.40 0.71 

75 50 10.68 0.71 

75 75 10.68 0.71 

75 85 10.68 0.71 
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Based on these diffusivity and solubility considerations obtained through single 
polymer films and pure PU adhesives, respectively, the concentration of PU adhesive in the 
delamination solution, [PUL] (mg/mL) was plotted as a function of time for each MFPF sample. 
As the increase in [PUL] indicates the delamination of multilayer sample, these graphs can also 
be interpreted as the delamination rate of MFPFs.  

 

Delamination tests of typical MFPFs 
 

In order to validate the fundamental kinetic model elaborated based on diffusivity of formic 
acid through different polymer films separately and the dissolution rates that were 
determined based on pure SB-PU and SF-PU adhesives, case studies were performed on five 
typically used MFPFs at different temperatures, acid concentrations and S/L ratios. The results 
are shown in Figure 13 expressed as a concentration increase of PU adhesive in the 
delamination solution, [PUL] by time. In the graphs, experimental results are indicated as dots 
and the kinetic model as straight lines. The plateau indicates that 100% of the adhesive is 
dissolved, thus 100% delamination is achieved as shown in Figure 6 as the 3rd and 4th zone 
for multilayer flexible packaging film (MFPF) without and with an Al layer, respectively. As can 
be seen in Figure 13, the experimental data match closely with the fundamental kinetic model. 
This is also confirmed through a statistical analysis, with the TIC values in all cases varying in 
the range of 0.06 and 0.25 as indicated in Table S3. 
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Figure 13. Concentration increase of PU adhesive over time, [PUL] (mg/mL) a) for each MFPF with 100 v% formic 
acid and at 75 °C; b) for sample D at 50 °C, 65 °C and 75 °C with 100 v% formic acid; c) for sample B at 50 v%, 75 
v%, 85 v% and 100 v% formic acid at 75 °C; d) for sample B and D both at 0.005 g/mL S/L (straight lines) and also 
at 0.12 g/mL and 0.025 g/mL S/L ratio, respectively (dashed lines) with 100 v% formic acid and at 75 °C. The 
plateau means 100% delamination and might lie differently depending on which sample or the amount of 
samples used in the experiment. 

 

Since MFPF samples constitute of different polymer layers and PU adhesives, they show 
different delamination kinetics as shown in Figure 13a. Therefore, firstly the fundamental 
kinetic model was tested by performing kinetic studies on each MFPF sample under the same 
experimental condition (at 75 °C with 100 v% formic acid). According to the results, the PU 
adhesive reached its maximum concentration before 3000 seconds for all MFPFs, indicating 
100% delamination of all 5 tested multilayer samples which is confirmed by calculating the 
expected adhesive concentration via Equation 2. Among all MFPFs, sample A and B showed 
slower delamination as they contain two layers of SB-PU adhesive. In addition, as explained in 
the ‘model development’ section, a converging point was seen during delamination of sample 
A and B because the volume of formic acid diffused through each surface of the sample was 
considered separately as they contain an Al layer (Figure 6). Although sample A and B reached 
100% delamination at the same time due to their similar composition, delamination of sample 
B started earlier compared to sample A. This is due to higher diffusion coefficient of the type 
B corona PET (2.86*10-11 cm2/s) compared to the type A corona PET (1.81*10-11 cm2/s) as 
indicated in Table 3. Although a similar solid/liquid (S/L) ratio was used for each MFPF (  ̴0.005 
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g/mL), the [PUL] reached with sample C, D and E was the half of [PUL] reached with sample A 
and B as they contain only one layer of PU adhesive. Among these MFPFs, delamination of 
sample E required more time, probably due to presence of a lacquer layer and lower diffusion 
coefficient of constituent chemPET film compared to corona PET film as shown in Table 3. 

Secondly, sample D was selected to validate the fundamental kinetic model at different 
temperatures using 100 v% formic acid as shown in Figure 13b. As the same S/L ratio (0.005 
g/mL) is used in each test, the maximum value of [PUL] reached was the same (0.17 mg/mL) 
at different temperatures. According to the results, when the temperature is increased, the 
delamination rate of sample D increases due to increased dissolution rate of adhesive and also 
higher diffusion rate of formic acid. For example, delamination of sample D was completed in 
less than 2000 seconds at 75 °C, while it took more than 4000 seconds at 50 °C. This can also 
be confirmed by the diffusion coefficients presented in Table 3, showing that diffusion 
coefficients of constituent polymer layers of sample D at 75 °C, transparent PE and corona PET 
(Type A), are around 10-fold higher than the values at 50 °C.  

Thirdly, the fundamental kinetic model is also validated at different formic acid 
concentrations ranging from 50 v% to 100 v% based on sample B as shown in Figure 13c. 
Similar to temperature, acid concentration is also directly proportional to the delamination 
rate of multilayer sample. Therefore, according to the kinetic model, total delamination of 
sample B with 100 v% formic acid is estimated more than four-fold faster compared to that 
with 50 v% formic acid. This was also confirmed experimentally, where it was observed that 
the delamination of sample B with 100 v% formic acid was completed in less than 2000 
seconds, while it took more than 9000 seconds when using 50 v% formic acid instead. 
Furthermore, it is noticed that as the concentration of formic acid decreases, the converging 
point in the graph starts to disappear. This can be due to a higher influence of the boundary 
layer on the overall mass transfer coefficient at lower acid concentrations. As the acid 
concentration decreases, the boundary layer thickness increases as presented in Table 4, as 
such the difference in acid diffusivity through the different polymer films becomes less 
significant. This results in similar overall mass transfer coefficient and diffusion, thus the 
converging point gets smaller. 

Lastly, the effect of S/L ratio on delamination rate was investigated on sample B and D, 
containing SB-PU and SF-PU adhesives respectively, by using 100 v% formic acid at 75 °C as 
shown in Figure 13d. Based on the solubility of both PU adhesives in formic acid at 75 °C as 
indicated in Figure 11, SF-PU has much lower solubility compared to SB-PU adhesive. In order 
to eliminate saturation of adhesive in the acid medium, 0.12 g/mL and 0.025 g/mL of S/L ratio 
was used for sample B and D, respectively. As sample D contains one layer of PU adhesive and 
also lower amount of multilayer sample was used for delamination, the maximum [PUL] 
reached was much lower compared to sample B. When the experimental data of both samples 
obtained at 0.005 g/mL of S/L were compared with the data obtained at higher S/L ratio, it is 
observed that increasing S/L ratio does not influence the delamination rate of multilayer 
samples significantly. For example, even the S/L ratio of sample B was increased 24 times 
(from 0.005 g/mL to 0.12 g/mL), it still delaminated fully in the same time frame (around 2800 
seconds). Therefore, at high S/L ratios, delamination rate is only limited by the solubility of the 
adhesive in formic acid.  
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Conclusion 

 

Delamination could become a key process in the circular economy of plastics as it allows to 
recover polymers separately. In order to do so our study demonstrates that understanding 
the delamination mechanism is key to optimize the delamination of MFPFs to a more 
competitive level. Fundamental understanding of the delamination mechanism would 
strongly accelerate the effort for multilayer plastic waste management and also give direction 
to research on related topics. In addition to fundamental understanding, this study includes 
typical multilayer structures at different experimental conditions in order to validate the 
kinetic model. These findings allow to estimate the delamination rate of various types of real 
multilayer waste streams and also enable process optimization, which is required to achieve 
competitive delamination processes. 

When delaminating multilayer flexible plastic films (MFPFs) using carboxylic acid, we 
found that the diffusion through both polar e.g. PET (0.001 µg/cm2 in 20 min) and apolar 
polymers e.g. PP (0.0004 µg/cm2 in 20 min) occurs faster in case of formic acid due to its 
shorter alkyl chain. Therefore, in this study formic acid is selected as a superior medium to 
delaminate multilayer components. 

Firstly, diffusivity of formic acid through each constituent polymer layer of multilayer 
samples was measured at different temperatures and acid concentrations. According to the 
results, the diffusion of formic acid is directly proportional to the temperature and acid 
concentration. For example, when temperature is decreased from 75 °C to 50 °C, the diffusion 
of formic acid through transparent PE is decreased by a factor 8. In addition to this, it is 
observed that polymer morphology has also a significant effect on acid diffusivity. Even at the 
highest operating temperature and formic acid concentration (at 75 °C with 100 v% formic 
acid), the slowest diffusion is observed through PP (0.004 µg/cm2 even after 160 min) due to 
its lower polarity and higher crystallinity. On the other hand, the fastest diffusion is observed 
through transparent PE film under the same experimental conditions despite of its higher 
crystallinity compared to PET films. This might be due to greater chain mobility of PE at 75 °C 
as its Tg is much lower compared to that of PET. 

 Secondly, dissolution kinetics of pure cured SB-PU and SF-PU adhesives were 
investigated at temperatures ranging from 60 °C to 100 °C and at acid concentrations ranging 
from 60 v% to 100 v%. The dissolution rate of both adhesives is directly proportional to the 
temperature and formic acid concentration. For example, when the temperature was lowered 
from 100 °C to 60 °C, a 2-fold and 1.5-fold decrease were observed for the dissolved SB-PU 
and SF-PU adhesive (%), respectively. Interestingly, the SB-PU adhesive was affected to a 
larger extent by temperature changes whereas the SF-PU adhesive was more sensitive 
towards changes in formic acid concentration. In addition, it is observed that under the same 
conditions dissolution of SB-PU is faster due to its higher solubility in formic acid.  

Thirdly, based on these obtained data on diffusivity and dissolution kinetics, 
delamination of the MFPFs was described through a kinetic model. Diffusion of formic acid 
through the polymer films was described by Fick's first law and the dissolution kinetics of PU 
adhesives were calculated based on first-order kinetics. In order to test the fundamental 
kinetic model, various case studies were performed at different experimental conditions. 
According to the results, all MFPFs were fully delaminated before 3000 seconds. Among these 
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MFPFs, sample A and B, containing an Al layer, showed slower delamination as they have two 
layers of PU adhesive and also due to lower diffusivity of acid through the PP film. On the 
other hand, sample D containing transparent PE and PET films was delaminated in the shortest 
time frame due to the higher diffusion coefficient of constituent polymer layers. The kinetic 
model was also confirmed that higher temperatures and acid concentrations increase the 
delamination rate of MFPFs due to increased diffusivity of acid and dissolution rate of 
adhesives. In terms of S/L ratio, it is seen that increase in S/L ratio does not affect the 
delamination rate of MFPFs significantly, until solubility is reached. As the solubility of the SB-
PU adhesive is almost 3 times higher than that of the SF-PU adhesive, the MFPFs with SB-PU 
adhesive would be more efficient to delaminate in terms of the necessary amount of formic 
acid. 

As next steps, further optimization of delamination conditions, recovery of the 
delamination medium, for example by evaporation/distillation and also confirmation of the 
fundamental kinetic model with a broader mix of MFPF structures will be crucial to implement 
an economic and environmental competitive delamination process which can be assessed 
based on, for instance, life cycle assessment (LCA) and techno-economic assessment (TEA).  
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Delamination of multilayer flexible packaging films (MFPFs) was described through a model 
based on Fick’s first law of diffusion and first-order dissolution kinetics of polyurethane (PU) 
adhesives. The model was validated on typical MFPFs under different experimental 
conditions. Under the studied conditions the model proved to successfully estimate the 
delamination time of MFPFs. 
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