Vortex chamber technology: Flow regimes and applications

Juray De Wilde

Université catholique de Louvain

Materials and Process Engineering (IMAP) Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium

juray.dewilde@uclouvain.be

PSYCHE Workshop, May-14, 2020

OUTLINE:

Introduction

• Limitations of conventional fluidized beds

• VC-RFB

- Process Intensification through high-G operation
- Flexibility in the operating conditions

• Hydrodynamics

- Gas & solids flow pattern
- Dense versus dilute flow

Applications

- Drying of granular materials and powders
- (Fine) particle coating & granulation/agglomeration
- Spray drying
- Reactions

Conclusions & perspectives

Figure 13.3-4

Fluidization regimes with coarse particles. After Squires et al. [1985].

(Froment et al., 2010)

VC-RFB: Process intensification through high-G operation

Combined high-G intensified gas-solids contact, gas-solids separation & segregation (applications: chemical looping combustion, particle coating, ...)

- No rotating equipment, but one degree of freedom lost
- Independent control gas and solids residence time
- Minimum gas flow rate requirement
 => Short gas-solids contact time

(De Wilde & de Broqueville, 2007)

VC-RFB: Process intensification through high-G operation

(Weber, Stehle, Breault & De Wilde, 2017) (Verma, Li & De Wilde, 2017)

National Energy Technology Laboratory (NETL – US-DOE)

(De Wilde & de Broqueville, 2008)

VC-RFB: Flexibility in the operating conditions

Combined high-G intensified gas-solids contact, gas-solids separation & segregation (applications: chemical looping combustion, particle coating, ...)

(De Wilde, Richards & Benyahia, 2016)

National Energy Technology Laboratory (NETL – US-DOE)

BED STABILITY AND LARGE-SCALE UNIFORMITY

(De Wilde & de Broqueville, 2008)

Computational Fluid Dynamics

- GASES INJECED VIA SUCCESSIVE GAS INLETS HARDLY MIXED - GAS PHASE FLOW PATTERN CLOSE TO PLUG FLOW

- RTD GAS DETERMINED BY THE RADIAL VELOCITY COMPONENT

Figure 3.2.1. (a) Normalized circulation ($\Gamma = v_t \cdot r$) as a function of the normalized radial position in the vortex chamber (subscript $_0$ indicates at the chamber outer wall) in the absence and presence of particles. Vortex chamber: D = 36 cm, L = 6 cm, $D_c = 8$ cm, n > 20, $\lambda = 0.099$. Operating conditions: solids loading: 1 kg of sand particles ($\rho_s = 1900 \text{ kg/m}^3$, $d_p = 2 \text{ mm}$). (Adapted from Volchkov et al., 1993.) (b) Rotational speed as a function of the solids loading for different radial positions in the vortex chamber. Vortex chamber: D = 30.5 cm, L = 6.3 cm, $D_c = 15 \rightarrow 8$ cm (convergent), n = 12, s = 0.3 mm, $\lambda = 0.00376$. Operating conditions: talc particles ($\rho_s = 2700 \text{ kg/m}^3$, $d_p = 20 \text{ µm}$). (From Anderson et al., 1972.)

End wall boundary layer flow (stationary end walls) \Leftrightarrow Determined by amount of swirl: For D(chimney) << D & L/D > 2:

- Low swirl: u(tang)/u(rad) < 1-2: radial inflow enough momentum to penetrate centrifugal field
- High swirl: u(tang)/u(rad) > 10: radial flow diverted axially & all flow leaves via end wall boundary layers

(NASA Lewis Research Center, TN D-3072, 1965)

Figure 3.6.4. Illustration of boundary layer flow. Experimentally measured axial profiles of the radial gas velocity. 1. In the absence of particles; 2. In the presence of particles. Vortex chamber: D = 20 cm, L = 2.6 cm, $D_c = 10$ cm, n > 20, $\lambda = 0.0518$. Operating conditions: solids loading: 0.15 kg of wheat grain particles ($\rho_s = 1200$ kg/m³, $d_p = 2-5$ mm). [Adapted from Volchkov et al., 1993.]

APPLICATIONS: Drying of granular materials and powders

Fluidization & low-temperature wet coating of fine (cohesive) particles

Efficiency & novelty:

- Intensified interfacial transfer of mass, heat & momentum (reduced effect van der Waals forces)
- Use of relatively large droplets & eventually high liquid concentrations
- Fast coating (few seconds)
- Separation coated / non-coated particles & coating droplets

Quality:

- Limited / easily controlled agglomeration
- Uniform coating (no/few cracks & cavities)
- Non-burned, ...

72 x 0.2 mm slots

APPLICATIONS: Fine particle coating

Other operating conditions: atomising air pressure of 1.5 bar, solids feeding rate of 2 g/s

Visual inspection (SEM):

- Limited agglomeration (< 4 particles)
- Low level considering droplet size & low T
- Fast coating time (< 5 s)
- Agglomeration controlled by air flow rate

(Eliaers et al., 2014)

Particles morphology & coating quality: Active component release test

Powder	Core material component %	Active component release	Coating (g/g)	Active component release reduction
Original powder	73.7	0.6	-	-
250 Nm3/h coated powder	46.4	0.24	0.59	60%
400 Nm3/h coated powder	46.6	0.24	0.58	60%

 60% reduction release active component

 \rightarrow very few cracks & cavities

58 g_{coating} /100 g_{uncoated}
 → on average 1.22 µm coating (assuming 70µm spherical uncoated particles)

good quality coating

29 May 2012

(Eliaers et al., 2014)

APPLICATIONS: Reactions

SO₂ NOx Adsorption Process

Fig. 32. 2D periodic domain CFD simulations of the simultaneous adsorption of SO₂ and NO_x on a γ -Al₂O₃ sorbent in a vortex chamber type reactor. Snapshot of the (a) solids volume fraction and the (b) SO₂, (c) NO and (d) NO₂ concentrations (ppm-v). Reactor volume and operating conditions: see Table 8(a) – 5.38 kg bed, single-pass case. (From Ref. [6]).

(Ashcraft et al., 2013)

- Dilute flow regime
- Strong vortex & secondary flows
- Droplet-air interaction complex
- Efficient drying:
 - Use hot air
 - Prevent product
 degradation

Multi-zone operation

Axial multi-zone operation:

Axial multi-zone operation:

Without water injection

With water spraying

Water injection => milk injection at t = +/- 40 s

Different solids outlets: Fine particles outlet

VORTEX CHAMBER

- UNIQUE HYDRODYNAMIC CHARACTERISTICS
- COMBINED HIGH-G INTENSIFIED GAS-SOLIDS CONTACT & SEPARATION & SOLIDS SEGREGATION
- MULTI-ZONE OPERATION

APPLICATIONS

- PARTICLE PRODUCTION & TREATMENT
- OTHER (POLYMERIZATION, COMBUSTION & GASIFICATION, HETEROGENEOUS CATALYTIC REACTIONS, ...)

- Axel de Broqueville
- Luc Wautier
- Waldo Rosales Trujillo
- Nicolas Staudt & Thomas Lescot
- Philippe Eliaers & Xavier Scheuer
- Subhajit Dutta, Jnyana R. Pati & Huijun Ge
- Thomas Tourneur & Romain Pecher
- Sofiane Benyahia, Tingwen Li, Fnu Vikrant Verma
- Justin M. Weber, Richard C. Stehle, Ronald W. Breault
- George Richards, Bhima Sastri
- Fonds National de Recherche Scientifique (FNRS)
- EC Marie-Curie IRSES project iComFluid
- Calcul Intensif et Stockage de Masse (CISM UCL)
- Institute for Sustainable Process Technology (ISPT)
- FrieslandCampina, Unilever, Bodec, Cordion-Purac, other
- ORISE Oak Ridge Associated Universities
- NETL National Energy Technology Laboratory (US-DOE)
- Interreg France-Wallonie-Vlaanderen Europese Unie

France-Wallonie-Vlaanderen

UNION EUROPÉENNE EUROPESE UNIE

Avec le soutien du Fonds européen de développement régional Met steun van het Europees Fonds voor Regionale Ontwikkeling

